

A COMPARISON OF MAIN ROTOR SMOOTHING ADJUSTMENTS USING LINEAR AND NEURAL NETWORK ALGORITHMS

THESIS

Nathan A. Miller, Captain, USMC

AFIT/GAE/ENY/06-M24

DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.
policy or position of the United States Air Force, Department of Defense, or the U.S.
policy or position of the United States Air Force, Department of Defense, or the U.S.
policy or position of the United States Air Force, Department of Defense, or the U.S.
policy or position of the United States Air Force, Department of Defense, or the U.S.
policy or position of the United States Air Force, Department of Defense, or the U.S.
policy or position of the United States Air Force, Department of Defense, or the U.S.
Government.

A COMPARISON OF MAIN ROTOR SMOOTHING ADJUSTMENTS USING LINEAR AND NEURAL NETWORK ALGORITHMS

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Aeronautical Engineering

Nathan A. Miller, BS

Captain, USMC

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A COMPARISON OF MAIN ROTOR SMOOTHING ADJUSTMENTS USING LINEAR AND NEURAL NETWORK ALGORITHMS

Nathan A. Miller, BS
Captain, USMC

Approved:	
Donald L. Kunz (Chairman)	Date
Robert A. Canfield (Member)	Date
Paul A. Blue Mai USAF (Member)	 Date

AFIT/GAE/ENY/06-M24

Abstract

Helicopter main rotor smoothing is a maintenance procedure that is routinely performed to minimize destructive airframe vibrations induced by non-uniform mass and/or aerodynamic distributions in the main rotor system. This important task is both time consuming and expensive, so improvements to the process have been long sought. Traditionally, vibrations have been minimized by calculating adjustments based on an assumed linear relationship between adjustments and vibration response. In recent years, artificial neural networks have been designed to recognize non-linear mappings between adjustments and vibration response. This research was conducted in order observe the mathematical character of the adjustment mapping of the Vibration Management Enhancement Program's PC-Ground Base System (PC-GBS). Flight data from the UH-60, AH-64A, and AH-64D were utilized during the course of this study. What has been determined is that, in a majority of situations, the neural networks of the PC-GBS produce adjustments that can be reproduced by a linear algorithm, thus implying that the character of the mapping is in fact linear.

AFIT/GAE/ENY/06-M24

This work is dedicated to my wife and best friend for her support and patience throughout the course of this study.

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Professor Donald Kunz, for sharing his knowledge and providing advice throughout the course of this endeavor. Many days of aimless wandering were avoided by following his excellent directions. I would also like to thank Dr. Jon Keller for providing technical guidance during the course of this research.

Nathan A Miller

Table of Contents

		Page
Abstract		iv
Dedication		v
Acknowledge	ements	vi
Table of Cont	rents	vii
Nomenclature	<u> </u>	x
List of Figure	s	xi
List of Tables	S	xii
I. Introductio	n	1-1
1.2 Pr 1.3 O 1.4 Re	eneral oblem Statement bjectives esearch Methodology napter Summary	1-3 1-3 1-3
II. Backgrour	nd	2-1
2.1 2.2 2.3 2.4 2.5	Introduction General Classification of Vibration Classification of main rotor vibrations Flight Conditions for Vibration Measurement Types of Main Rotor Adjustments	2-1 2-2 2-4
2.5.1	Adjustments for Mass Imbalance Origin of a Mass Imbalance Aerodynamic Imbalances Main Rotor Adjustment Fidelity	2-5 2-6 2-7
2.7 2.8 2.8.1	History of Track and Balance Linear Algorithms The Aviation Vibration Analyzer	2-9 2-10
2.8.2 2.8.3 2.9	The Linear Algorithm Defined Determining the Linear Sensitivity Coefficient Matrix Application of Adjustment Sets	2-11 2-11
2.10 2.11	The Linear Assumption Comes into Question	2-14

	Page
2.11.1 The PC-Ground Based System	
2.11.2 PC-GBS Solution Options	
2.11.3 The Neural Networks of PC-GBS	
2.11.4 PC-GBS Performance From and Earlier Study	
2.12 Chapter Summary	.2-19
III. Methodology	3-1
3.1 Introduction	3-1
3.2 Origin of Research Data	
3.3 Data Acquisition Techniques	3-3
3.3.1 Removing the Effects of the Solution Optimization Expert	
3.3.2 Removing the Effects of the TON	3-4
3.3.3 Converting Detailed Adjustment Sets into Reduced Adjustment Vector	
3.4 Overview of Analysis Methods	3-6
3.5 Explanation of Vibration Ranges	3-7
3.6 Calculating the AVA Adjustment Set	
3.7 The Ad Hoc Sensitivity Coefficient Method	
3.7.1 Constructing the Ad-Hoc Sensitivity Coefficient Matrix	
3.8 Database Entries	
3.9 Chapter Summary	3-10
IV. Analysis and Results	4-1
4.1 Introduction	4-1
4.2 Comparison of PC-GBS Adjustments to AVA Adjustments	
4.3 Ad Hoc Coefficient Method	
4.3.1 Small Moves Ad Hoc Coefficient Analysis	
4.3.2 Method of RMS of the Small Moves Ad Hoc Coefficients	
4.3.3 Large Moves Ad Hoc Coefficient Analysis	4-10
4.3.4 Ad Hoc Sensitivity Coefficients as Determined By PC-GBS	.4-14
4.5 Chapter Summary	
V. Conclusions and Recommendations	5-1
5.1 Chapter Overview	5-1
5.2 Conclusions of Research	
5.3 Significance of Research	5-2
5.4 Recommendations for Action	
5 5 Summary	5-4

	Page
Appendix A: Aviation Vibration Analyzer Sensitivity Coefficients	A-1
Appendix B: UH-60 Database	B-1
Appendix C: AH-64A Database	
Appendix D: AH-64D Database	D-1
Appendix E: UH-60 Matlab Code	E-1
Appendix F: AH-64A Matlab Code	F-1
Appendix G: AH-64D Matlab Code	G-1
Bibliography	REF-1
Vita	VIT-1

Nomenclature

AVA Aviation Vibration Analyzer

AEN Adjustment Evaluation Networks

FPG Flat Pitch Ground

MRS Main Rotor Smoothing

PC-GBS Personal Computer – Ground Based System

RMS Root Mean Square

RPM Revolutions Per Minute

SOE Solution Optimization Expert

TON Track Optimization Network

UTD Universal Tracking Device

VMEP Vibration Management Enhancement Program

VPN Vibration Prediction Network

List of Figures

Page
Figure 1. Polar Chart of AH-64D vibrations from PC-GBS2-3
Figure 2. Universal Static Balance Fixture2-5
Figure 3. AH-64 Apache with blade weight installed2-6
Figure 4. A PCR on a UH-60 (left) and a Trim Tab on an OH-582-8
Figure 5. Universal Tracking Device mounted on a UH-60
Figure 6. Schematic of Neural Network Undergoing Training2-15
Figure 7. Vibration Values Tab of PC-GBS
Figure 8. Rotor Smoothing Solution Tab of PC-GBS
Figure 9. UH-60 Blackhawk Blade Map
Figure 10. UH-60 Bar Chart Comparison of AVA to PC-GBS
Figure 11. Graphical Depiction of Vector Difference4-3
Figure 12. AH-64A Bar Chart Comparison of AVA to PC-GBS
Figure 13. AH-64D Bar Chart Comparison of AVA to PC-GBS
Figure 14. UH-60 Small Moves Ad Hoc Weight Adjustments
Figure 15. Polar Chart of UH-60 Weight Adjustments4-10
Figure 16. UH-60 Bar Chart Comparison of RMS of Large Moves to PC-GBS4-12
Figure 17. AH-64A Bar Chart Comparison of RMS of Small Moves to PC-GBS4-13
Figure 18. AH-64D Bar Chart Comparison of RMS of Large Moves to PC-GBS4-13

List of Tables

Page
Table 1. Vibration Measurement Flight Conditions2-4
Table 2. Sample Calculation
Table 3. Vibration Magnitude Ranges by Category
Table 4. Typical database entry for the UH-60 Blackhawk
Table 5. Adjustment Move Sizes
Table 6. UH-60 Small Moves Ad Hoc Comparison
Table 7. AH-64A Small Moves Ad Hoc Comparison4-7
Table 8. AH-64D Small Moves Ad Hoc Comparison4-7
Table 9. UH-60 Comparison for RMS of Small Moves Ad Hoc
Table 10. AH-64A Comparison for RMS of Small Moves Ad Hoc4-8
Table 11. AH-64D Comparison for RMS of Small Moves Ad Hoc4-9
Table 12. Standard Deviations of Differences of RMS of Small Moves Ad Hoc4-9
Table 13. UH-60 Large Moves Ad Hoc Comparison
Table 14. AH-64A Large Moves Ad Hoc Comparison4-11
Table 15. AH-64D Large Moves Ad Hoc Comparison4-11
Table 16. Standard Deviation Between Ad Hoc RMS and PC-GBS Adjustments 4-14
Table 17. UH-60 Ad Hoc Sensitivity Coefficients
Table 18. AH-64A Ad Hoc Sensitivity Coefficients4-15
Table 19. AH-64D Ad Hoc Sensitivity Coefficients4-16

A COMPARISON OF MAIN ROTOR SMOOTHING ADJUSTMENTS USING LINEAR AND NEURAL NETWORK ALGORITHMS

I. Introduction

1.1 General

Since the early days of rotary wing aviation, helicopters have been well known for their unique ability to take off and land vertically as well as for their tendency to vibrate while doing so. Along with providing lift, helicopter main rotors are the source of some of the most destructive vibrations known to the aircraft industry. These one-per-rev vibrations are brought about primarily by non-uniform rotor mass distribution and non-uniform aerodynamic properties among the rotor blades.

In order to alleviate these destructive vibrations, the helicopter main rotor smoothing procedure is periodically performed. Helicopter main rotor smoothing (MRS) is a process in which vibration magnitude and phase are recorded both on the ground and in flight. Then, based on a predetermined relationship between vibrations and corrective adjustments, changes are determined for blade weights, pitch links, and trim tabs. The process usually requires several flights to reduce the vibration to acceptable levels and is therefore time consuming and expensive.

Efforts have long been made to improve the main rotor smoothing process so as to decrease the number of required flights and thus, save time and money. Over the years, data acquisition equipment has become more accurate, dependable, and user friendly. In recent years, a substantial effort has been made to improve the computer software used to convert raw vibration data into corrective main rotor adjustments [1,2,3]. These improvements are centered on the abandonment of the linear assumption relating main rotor adjustments to vibration response.

Due to the complexity of the dynamics involved with a main rotor system, simplifications have to be made about the relationship between vibrations and corrective adjustments. One such simplification is to assume a linear relationship exists between main rotor adjustments and vibration changes. Most MRS algorithms utilize the linear assumption to calculate main rotor adjustments. It is typical that several flights are required in order to smooth vibrations to within acceptable levels. The blame for this poor performance has recently been directed toward the linear assumption.

To this end, a new paradigm has been introduced to the practice of main rotor smoothing. Artificial neural networks have been trained to recognize the relationship between main rotor adjustments and their resulting change in vibrations. This new algorithm makes no assumptions about the mathematical character of the solution space, so it is therefore believed that a higher degree of adjustment accuracy can be realized.

1.2 Problem Statement

Until recently, the mathematical character of the vibration/adjustment solution space had been assumed to be linear; however, this has not been verified by a rigorous study. This thesis shall examine the validity of the linear assumption and shall determine whether higher order algorithms are necessary to accurately calculate main rotor adjustments.

1.3 Objectives

The objective of this research was to characterize the vibration/adjustment solution space as it is understood by a trained neural network, and to search for differences in adjustment solutions produced by a linear algorithm.

1.4 Research Methodology

The objectives of this research were met using two general techniques. The first technique was essentially a detailed comparison of the calculated adjustments from a neural network algorithm to those of a traditional, linear algorithm. If the two algorithms behaved the same, then the conclusion would be that the neural network behaved in a linear fashion. If they produced different results, however, the conclusion would not be as clear cut.

The second technique involved using the neural network to create linear coefficient matrices at multiple locations in the vibration and adjustment spaces. These matrices then became the core of new linear algorithms that were used to calculate adjustments for further comparisons.

1.5 Chapter Summary

Main Rotor Smoothing is an expensive procedure that must be performed periodically on all helicopters. Due to the high cost of fuel, maintenance time, and aircraft unavailability, improvements are sought to reduce the number of flights required to complete a MRS procedure. At the forefront of this effort is the creation of robust algorithms that calculate more accurate adjustment sets than today's linear algorithms. This study will quantify the major differences, if any, between a modern, non-parametric algorithm and traditional, linear algorithms.

II. Background

2.1 Introduction

Vibration is an inherent artifact of all machinery. Typically, in rotating machinery vibrations are often caused by a machine's rotating components having centers of mass that do not lie at the center of rotation. For rotating, aerodynamic components, vibrations can also be caused by non-uniform aerodynamic properties such as blade pitch or camber. In helicopters, vibrations can be quite powerful and lead to shortened component lives as well as crew fatigue. With non-aerodynamic components vibrations can be minimized using precise manufacturing techniques and mass balancing procedures. The rotating, aerodynamic components of the main rotor and tail rotor systems require that specialized vibration reduction procedures be performed. This research is focused on the largest contributor to aircraft vibrations: the main rotor system.

2.2 General Classification of Vibration

Vibrations are usually defined by the oscillatory motion of an object as given by equation (1) [4].

$$x(t) = A \cdot Cos(\omega t - \phi) \tag{1}$$

In this equation, A is the vibration amplitude, or maximum displacement of the object from its mean position, ω is the frequency of the oscillation and ϕ is the phase shift of the steady state response due to damping. In most MRS applications, the vibration displacement x is measured with one or more accelerometers mounted in specific locations on the aircraft.

The frequency of the vibration that MRS is concerned with is the same as that of main rotor system rotation. The phase lag is a product of the structural makeup of the aircraft and is dependent on the location from which vibrations are measured. Therefore, accelerometers must be mounted in the same location each time vibration data is recorded.

2.3 Classification of main rotor vibrations

The main rotor system produces vibrations that are quantified in a number of different ways. Typically, vibration is described as being a vertical vibration or a lateral vibration with respect to the helicopter frame of reference. The amplitude of the vibration is typically measured as velocity, in units of inches-per-second, or IPS. While equation (1) requires amplitude in terms of distance, here we are using amplitude to mean the total distance traveled by the accelerometer in one second. The terms amplitude and magnitude are often used interchangeably when referring to the strength of the vibration. The frequency of the vibration is typically a multiple of the main rotor's period. A 1/rev (pronounced 1-per-rev) vibration produces one vibration cycle for each revolution of the main rotor system. A 1/rev vibration is typically brought about by mass and/or aerodynamic asymmetries in the main rotor system. An *n*/rev vibration produces *n* cycles per revolution, where *n* is the number of blades on the main rotor system. While both types of vibrations are of great importance to helicopter users and designers, only the 1/rev vibrations shall be considered in this study.

In order to further categorize a vibration, a quantity known as phase angle is assigned to the location of peak amplitude. Phase angle is measured from an aircraft specific origin, such as the nose or tail of the aircraft, with increasing phase opposite the direction of main rotor rotation. Test equipment is used to record vertical and lateral vibration amplitude as well as the main rotor angular position. The vibration's peak amplitude is matched with angular position of the main rotor such that a vibration map (see Figure 1) can be plotted with respect to the stationary main rotor. This is particularly useful in determining the corrective action to take in response to vibrations.

Figure 1. Polar Chart of AH-64D vibrations from PC-GBS. The arrows indicate predicted vibrations following corrective adjustments.

2.4 Flight Conditions for Vibration Measurement

Now that we can quantify a helicopter vibration in terms of direction, magnitude, and phase, we must assign a flight condition at which the vibration should be measured. Typically, a helicopter's vibration characteristics are measured at several specific flight states ranging from on the ground with flat blade pitch at 100% RPM (FPG-100) to maximum level speed (or close to it). Table 1 shows the flight states at which vibration measurements are recorded for two types of helicopter. The quantity of flight states is carefully chosen so as to give a good representation of an aircraft's vibration signature while minimizing the duration of the test flight.

Table 1. Vibration Measurement Flight Conditions

UH-60	AH-64
FPG-100	FPG-100
Hover	Hover
80 Knots	60 Knots
120 Knots	80 Knots
145 Knots	100 Knots
	120 Knots
	140 Knots

2.5 Types of Main Rotor Adjustments

With a clear understanding of what defines a main rotor vibration, it is now important to determine what form the corrective actions should take. In determining this we examine a few of the phenomena that could be responsible for main rotor vibrations. Like any rotating component, the main rotor system could suffer from a mass imbalance. There is also the likelihood that the rotor blades are not aerodynamically identical resulting in non-uniform lift production on the rotor disk.

It is possible that blade stiffness varies from blade to blade allowing some blades to bend and twist more than others at equivalent aerodynamic loads. While this is not a complete list of causes for vibrations, it lends insight into the methods we may employ to help eliminate them. These methods shall include modifying the aerodynamic qualities of the blades as well as modifying their mass.

2.5.1 Adjustments for Mass Imbalance.

To correct for mass imbalances, weights can be added to or subtracted from individual rotor blades. Rotor blades may be balanced prior to installation using devices such as the Universal Static Balance Fixture shown in Figure 2. This piece of equipment allows one to ensure consistency with the spanwise center of mass of each rotor blade prior to installation. This balance technique is an important step in the overall MRS process as it greatly reduces the time spent balancing the mass of the main rotor system after blade installation.

Figure 2. Universal Static Balance Fixture. This piece of equipment is utilized to statically balance the spanwise moment prior to installation [5].

The only weight adjustment method being considered in this study is the addition of blade weights in response to flight test data. Figure 3 shows the rotor hub of an AH-64 Apache with blade weights installed. What follows is a brief explanation of why mass imbalances can occur in a main rotor system.

Figure 3. AH-64 Apache with blade weight installed [5]

2.5.2 Origin of a Mass Imbalance.

Mass imbalances can originate at the manufacturing level, evolve over time, or result from specific events. At the manufacturing level, main rotor system components are fabricated to meet specific engineering tolerances. The size of these tolerances must be small enough to satisfy the demands of the engineer, yet large enough for affordable mass production.

If large enough, which they usually are, these tolerances can lead to mass imbalances in the main rotor system, thus requiring weight adjustments.

Another cause for mass imbalance is that over time, blade erosion occurs due to countless impacts of the rotor blades with sand, dirt, and other debris. Blade erosion causes the rotor system to slowly lose weight. If one of the eroded blades is replaced with a new blade, a mass imbalance is likely to be introduced. Since most helicopter users do not change all of their blades at the same time, mass imbalances are almost sure to be introduced every time a blade is changed.

One final avenue for blade mass imbalance is from a specific event such as a blade repair. A blade repair usually consists of applying a small amount of patching material to the blade to mend a hole or crack. The addition of this material to the rotor blade not only increases the blade mass but also alters its center of moment, thus leading to an increased number of MRS iterations.

2.5.3 Aerodynamic Imbalances.

Aerodynamic imbalances may be created at the same time as mass imbalances. When rotor blades are fabricated, slight imperfections in blade shape cannot be avoided. Even if they were avoided, the overall shape of the blade would be changed by blade erosion during normal flight operations. These aerodynamic imbalances can be dealt with in a number of ways. One way is to change the angle of attack of the blade by adjusting the length of the pitch control rod (PCR). Another is to change the camber of the blade by bending trim tabs located on the blade trailing edge (see Figure 4). While PCR adjustments change the AOA of the entire blade, trim tab adjustments only affects the camber of the blade over the length of the trim tab.

Figure 4. A PCR on a UH-60 (left) and a Trim Tab on an OH-58 [5]

2.6 Main Rotor Adjustment Fidelity

Now that we have discussed adjustment types, it is time to understand the limitations in fidelity of the adjustment sets. Every adjustment type has a minimum allowable magnitude that is set by the manufacturer. For instance, the blade weights may come in one ounce bars or the PCR may have a locking turnbuckle that allows for no less than ¼ turn of adjustment. An adjustment set with a higher degree of precision than this basic unit will be rounded off to the nearest basic unit.

There is also the fundamental principle that a calculated adjustment move may have a phase angle anywhere from 0-360° but can only be applied on actual blade locations (0°, 90°, 180°, 270° in 4 bladed rotor systems). When an adjustment is calculated at a location between two blades, the adjustment must be divided between the two blades to produce an equivalent result. Most of the time a perfect division of the solution is impossible and more round off error is incurred.

2.7 History of Track and Balance [6,7]

Over the decades since the introduction of the helicopter, vibration reduction procedures have changed greatly. Prior to the incorporation of onboard vibration measuring equipment, rotor tracking was the limit of our capabilities for vibration reduction. Essentially, rotor tracking is an effort to make all rotor blades fly the same path, thus forming a flat rotor disk at 100% RPM. The principle is that the rotor blades are aerodynamically similar if they fly the same path. By incorporating this tracking procedure with a static blade balancing as discussed earlier in section 2.5.1, some vibration reduction is achieved. Unfortunately, early blade tracking techniques could only be accomplished using ground equipment, thus preventing measurements of aerodynamic differences at various flight speeds.

Later, onboard vibration recording equipment was developed and used in conjunction with onboard optical tracking equipment for in flight tracking and balancing of the rotor system. Highly skilled technicians analyzed the magnitude and phase of vibrations as well as track split data in order to determine appropriate adjustment sets for blade pitch, trim tabs, and blade weights. Again, this technique required a great deal of time and skill to accomplish.

Finally, with the advent of high speed digital computers, diagnostic equipment was created that could measure vibrations and blade track as well as calculate adjustment sets. This new equipment not only sped up the rotor smoothing process but also reduced the requisite skill level of the operator. For the past 20 years very little has changed in the overall concept of a main rotor smoothing.

Vibrations and rotor track are still measured in much the same way, albeit more accurately, and adjustments sets still consist of blade weight, pitch link, and trim tab corrections.

2.8 Linear Algorithms

One area that has seen great efforts for improvement in recent years is the computer software used to calculate adjustment sets. There have been efforts to improve this software not only through a more sophisticated user interface, but also through the algorithm that converts raw vibration and track data into useful adjustment sets. Two types of algorithms are being considered in this study. The first type is an algorithm in wide use today that is built on the same linear assumption used since computer automated track and balance began. The second is a state-of-the-art neural network algorithm that is being used by a select few units in the US Army.

2.8.1 The Aviation Vibration Analyzer.

The Aviation Vibration Analyzer (AVA) is a helicopter vibration measurement system that utilizes a linear algorithm in its main rotor smoothing software. That is, we assume that a linear relationship exists between an adjustment and the resulting change in vibration. While this greatly simplifies our calculations, there is the potential that this assumption may not be accurate and could lead to poor adjustment sets in environments where the rotor system behaves in a non-linear fashion.

2.8.2 The Linear Algorithm Defined.

By making the linear assumption, we are able to employ a relatively simple algebraic model to describe the cause and effect of adjustment sets on helicopter vibrations.

$$[C]_{N \times M} \cdot [Adj]_{M \times 1} = [\Delta Vib]_{N \times 1} \tag{2}$$

In Equation (2), [C] is a sensitivity coefficient matrix that is specific to a type, model, and series of helicopter, [Adj] is an adjustment set, and [Δ Vib] is the change in vibrations brought about by the adjustment set. N stands for the number of specific flight regimes over which data is collected (see Table 1), and M stands for the number of adjustment types (i.e., blade weight, pitch link, and trim tab). The concept of a linear algorithm can be better understood if we first know how the sensitivity coefficient matrix is determined. In doing so, we will look at the case of the UH-60.

2.8.3 Determining the Linear Sensitivity Coefficient Matrix.

A set of sensitivity coefficients for a helicopter is determined through a series of test flights. First, a baseline vibration set is recorded at the *N* flight conditions before any adjustments have been made. Next, a single adjustment move is applied to the main rotor system (e.g. adding a 5 oz weight to the yellow blade). The helicopter is then flown again at the *N* flight conditions and a new vibration set is recorded. After landing, the adjustment is removed and a different adjustment type is applied. This process is repeated until vibration responses for all adjustment types have been recorded. When complete, the *C* matrix is populated in accordance with equation (3).

$$C_{nm} = \frac{Vib_{after_n} - Vib_{before_n}}{Adj_m}$$
(3)

Typically, several coefficient matrices are combined together in a root-mean-square sense in order to determine a mean coefficient matrix. Due to several factors, such as electronic noise, weather, and differences between like airframes, the average coefficient matrix is only about 20% accurate, and in many cases, worse [3]. For this reason, it is very likely that several test flights will be required to adjust the main rotor system to an acceptable vibration level.

The resulting mean coefficient matrix used in MRS procedures is obtained by rearranging equation 1 and solving for the adjustment set. This is not easily done without the aid of a computer, due to the fact that the linear system typically contains more equations than unknowns. In the case of the AH-64D, there are five unknowns to solve for seven flight regimes. By incorporating a solution algorithm that minimizes the sum of the squares of predicted vibration magnitudes, the best overall adjustment set can be calculated.

2.9 Application of Adjustment Sets

Usually a main rotor smoothing algorithm is written to perform a majority of its calculations in the complex plane. In this fashion, a set of vibrations enters the algorithm and is first converted to a complex number using Equation (4).

$$Vib_{cmplx} = Mag \times [Cos(phase) + i \times Sin(phase)]$$
 (4)

This complex vibration is then converted into a complex adjustment set as previously described. The complex adjustment set, referred to as a reduced adjustment set, must be implemented as real adjustments on individual blades. This is then called the detailed adjustment set. There is typically more than one detailed adjustment set that corresponds to a single reduced set. For instance, on four-bladed helicopters, a positive adjustment applied to one blade has an equivalent effect on vibration as a negative adjustment applied to the opposite blade (180° phase shift). The difference between applying one versus the other lies in the effect the adjustment has on the track split.

Since a small track split is desired, an additional algorithm is typically incorporated in MRS software to convert reduced adjustments to detailed adjustments while minimizing track split. Such an algorithm would incorporate track data collected with equipment such as the Universal Tracking Device (UDT) shown in Fig. 5. The UTD is an electro-optical device that is usually mounted on the exterior of the aircraft during MRS operations and is able to "see" the flight path of individual blades as they enter its field of view. In recent years it has been shown that track split is not a contributor to main rotor vibrations (post-ground balance) and is optimized mainly for aesthetics.

Figure 5. Universal Tracking Device mounted on a UH-60 [5]

2.10 The Linear Assumption Comes into Question

About a decade ago, Taitel et al[3] questioned the viability of the linear assumption in main rotor smoothing algorithms. It was postulated that the accuracy of the adjustment set might be compromised under certain conditions if higher order main rotor interactions were neglected. This could then result in MRS iterations that require multiple flights. Since multiple flights are typically required to perform a MRS, it was believed that the performance of MRS algorithms could be improved by including the higher order interactions. To this end, neural network architectures were applied to the main rotor smoothing problem. The premise behind this approach was to train neural networks using vibration data from multiple test flights such that the true mathematical relationship between 1/rev vibrations and main rotor adjustments could be learned.

2.11 The Artificial Neural Network Algorithm

In the late 1990's, Wroblewski, et al [2] designed and implemented a neural network based software system for use on the US Army's helicopter fleet. The neural networks were trained with data from approximately thirty test flights per type of helicopter. One of the drawbacks of neural networks is that they are unable to extrapolate the character of the solution space for vibration regimes in which they haven't been trained. Since thirty flights are insufficient to fully train a neural network, modeled data (linear and other) was also incorporated into the training process in order to fill gaps. The intent was that as more flights became available the neural network training could be updated, thus allowing the vibration/adjustment mappings to mature over time.

A neural network is essentially a non-linear algorithm that is able to make predictions based on a history of observations. Figure 6 is a schematic of a neural network undergoing training. What follows is a simplified explanation of how the network is trained to calculate MRS adjustments.

Figure 6. Schematic of Neural Network Undergoing Training [8]

The adjustment portion of the neural network is trained by first recording a baseline vibration set. An adjustment is then applied to the main rotor system and a second vibration set is recorded. The difference vector between the second vibration set and the baseline vibration set is passed through the neural network as the "Input" vibration vector in Fig. 6. A set number of weighted functions operate on the vibration vector to create an adjustment vector, or "Output". The target value that the output adjustment set is compared to is the negative of the adjustment set that was applied prior to recording the second vibration vector. Based on the comparison, the weights within the neural network are adjusted until the output matches the target. This process is repeated with a variety of adjustment sets until the network is fully trained.

The appealing aspect of using a neural network for MRS procedures is that neural networks can be designed to recognize higher order relationships between adjustments and their vibration response. For this reasons, a properly trained neural network is believed to be capable of describing the relationship between vibrations and adjustments more accurately than a linear algorithm.

2.11.1 The PC-Ground Based System.

The neural network MRS algorithm that was considered in this study was that of the Vibration Management Enhancement Program's PC-Ground Based System (PC-GBS). This algorithm was designed to work for the same flight regimes as AVA. In fact, vibration data collected with AVA equipment is able to be analyzed by the PC-GBS software. After vibration data has been entered, the default "Best Overall Solution" is calculated to reduce vibration magnitudes to as close to zero as possible in the fewest number of moves.

A secondary consideration for the PC-GBS is to apply the moves such that the main rotor track split is also reduced.

2.11.2 PC-GBS Solution Options.

The user may choose other solution options such as "Resolve to Vibration Limits", "Limit Solution to x Number of Moves", or create a "Manual Solution". If the user chooses the option of "Resolve to Vibration Limits", an adjustment solution is calculated that will reduce vibration magnitudes to within minimum acceptable limits with the fewest number of moves. If the user chooses "Limit Solution to x Number of Moves", the number of adjustment moves will not exceed (but can be less than) the x number of moves. Finally, the experienced user may create a solution using a graphical user interface by selecting the "Manual Solution" option. In all cases, PC-GBS predicts the vibration levels and track split following application of the adjustment set.

2.11.3 The Neural Networks of PC-GBS.

The architecture used in the PC-GBS algorithm consists of four neural networks.

These are the Adjustment Evaluation Networks (AEN), the Vibration Prediction Network (VPN), the Track Optimization Network (TON), and the Solution Optimization Expert (SOE) [1]. A vibration set passes through these networks, entering as a complex vibration vector and exiting as a set of specific adjustments with a corresponding vibration and track prediction. Each network performs a specific function that shall be described next.

The AEN is a set of networks that provide the mapping of the complex vibration vector to the corresponding complex adjustment space.

Several candidate adjustment sets are calculated and then passed into the VPN where they are mapped back to the vibration space in order to predict a vibration response. Next, the candidate adjustment sets are passed into the TON where they are converted from reduced adjustment sets into detailed adjustments for specific blades. This net incorporates track data from the UTD when converting the complex adjustments into real adjustments. Finally, the SOE reviews the candidate adjustment sets and chooses the best one, based on the predicted vibration levels, the number of actual corrective moves, and the predicted track split. This final selection network is trained through an analysis of real-life examples where the optimal solution was chosen by human experts [1].

2.11.4 PC-GBS Performance From an Earlier Study.

Wroblewski et al [1] discuss the initial results of the PC-GBS algorithm on the AH-64 Apache helicopter. They noted that 2-4 flights were typically required to smooth the rotor. It was not feasible to run parallel flight tests with AVA adjustments, so it was hard to say which algorithm was superior; however, the adjustment solutions were compared between the two algorithms. The neural network consistently offered solutions with fewer numbers of moves and lower predicted vibrations than those of the linear algorithm. This alone represents a noteworthy improvement of the neural network over the linear algorithm.

2.12 Chapter Summary

The problem of main rotor smoothing has long been an expensive challenge in the helicopter industry. Over the years, many improvements have been made to reduce the number of flights required to smooth 1/rev vibrations to within acceptable levels. The most recent improvement, the artificial neural network, has shown potential in reducing the number of iterations (flights) involved in a typical smoothing process. While the core of the software is protected by proprietary rights, its analytical capabilities can be employed to characterize the main rotor solution space as it is known to the trained neural networks.

III. Methodology

3.1 Introduction

The primary goal of this study was to gain insight into a main rotor system's mathematical nature by extracting vibration/adjustment relationships from trained neural networks. By comparing a large population of flight data over a broad spectrum of conditions, characteristics of the main rotor solution space, as learned by the neural network, may be identified.

3.2 Origin of Research Data

Comparisons were made for three different aircraft; the AH-64A Apache, AH-64D Longbow, and UH-60 Blackhawk. Each of these helicopters has a distinct set of trained neural networks contained in the PC-GBS software, as well as its own set of linear sensitivity coefficients. For the purposes of this study, the coefficients from the Aviation Vibration Analyzer system were used (Appendix A). Flight test data from multiple flights of each type of aircraft was compiled in several Microsoft Excel databases (Appendices B, C, D) and was evaluated using Matlab. The flight data utilized in this research was downloaded from an online VMEP database compiled by Intelligent Automation Corporation (IAC) and was evaluated using PC-GBS version 3.0 Build 439 Service Pack 2. For each flight, an Excel database entry was made consisting of vibration vectors (magnitude and phase), predicted vibration vectors, and detailed adjustment values. The data were recorded directly from the Vibration tab (Fig. 7) and the Rotor Smoothing Solution tab (Fig. 8) of the PC-GBS.

Figure 7. Vibration Values Tab of PC-GBS. Predicted vibration values in this figure correspond to adjustment values of Fig. 8.

Figure 8. Rotor Smoothing Solution Tab of PC-GBS

3.3 Data Acquisition Techniques

Before proceeding further, it is important to understand the method used to extract data from the PC-GBS. There are four neural networks contained within the PC-GBS. These are the AEN, the VPN, the TON, and the SOE. Of these four networks, only the AEN and the VPN have learned the relationship between main rotor adjustments and vibrations. The effects of the other two networks must therefore be removed from the data in order to obtain a clear picture of the main rotor solution space.

3.3.1 Removing the Effects of the Solution Optimization Expert.

The purpose of the SOE is to choose from an array of possible adjustment sets in accordance with training it received from human experts. The intent of this training was to teach the SOE to offer a solution with the minimum acceptable number of moves. Figures 7 and 8 show the adjustment set and predicted vibration vector when the *maximum* number of moves have been requested. Note that the adjustment set consists of six adjustment moves. Had the "Best Overall Solution" been used, the adjustment set would have been a single move of +1 notch on the yellow pitch link. The selection of this single adjustment move was determined by the SOE. This is obviously a superior adjustment set from the mechanic's point of view, because it reduces the time to implement adjustments as well as reduces the possibility of making a mistake. The tradeoff for this simpler solution is slightly higher (but still favorable) predicted vibration magnitudes and track split. While the SOE is an incredibly important contributor to the PC-GBS's performance, for the purposes of this study it only serves to mask our understanding of the AEN.

The SOE was effectively turned off by calculating adjustment sets using the option of *Limit Solution to X Moves* where *X* was set to the maximum number; as shown in Fig.8. For the AH-64 and UH-60, *X* was set to 20 and 12 respectively. This number was determined for the UH-60 by multiplying the three adjustment types over the four blades, and for the AH-64 by multiplying the five adjustment types over the four blades. By allowing the maximum number of moves, PC-GBS produces the most highly detailed adjustment set attainable from the AEN. Since maximizing the number of moves is the antithesis of the SOE, it is believed that this procedure effectively disables it.

3.3.2 Removing the Effects of the TON.

Unlike the AEN, the TON is concerned primarily with minimizing the main rotor track split. When a reduced adjustment set is calculated by the AEN, the adjustment magnitudes are all positive numbers with associated phase angles. One could apply this reduced adjustment set to the main rotor system as given, thus resulting in a beneficial change in the main rotor vibration vector. One could just as well apply the negative of the adjustment magnitude at a 180 degree phase shift and achieve the exact same change in the vibration vector. The difference between applying the positive versus the negative adjustment magnitude lies in the effect it has on the main rotor track. One of the purposes of the Track Optimization Network is to determine which adjustment moves to keep as positive magnitudes and which to make negative magnitudes in order to minimize the main rotor track split. The TON makes this determination as it converts a reduced adjustment set to a detailed adjustment set on actual rotor blades.

The method that was used in this study to convert the detailed PC-GBS adjustment sets into reduced adjustment sets automatically converted all magnitudes back to positive values. The next section provides a thorough explanation of this conversion process.

3.3.3 Converting Detailed Adjustment Sets into Reduced Adjustment Vectors.

As discussed earlier, vibration vectors were converted from real vectors to complex vectors in accordance with equation (4), repeated here for convenience.

$$Vib_{cmplx} = Mag \times [Cos(phase) + i \times Sin(phase)]$$
 (4)

The detailed adjustment sets were converted to complex numbers in much the same way. In the case of the UH-60, equation (5) was used.

$$Adj_{cmplx} = AdjMag \times [Cos(BladePhase-90) - i \times Sin(BladePhase-90)]$$
 (5)

Here, the value for *BladePhase* can only take on values of 0°, 90°, 180°, or 270°, as these are the respective phase angles associated with the black, yellow, blue, and red blades. The value for *AdjMag* is the magnitude of the adjustment move on the blade being considered. Figure 9 shows the top down view of a UH-60 Blackhawk with appropriate phase values assigned to each blade.

Figure 9. UH-60 Blackhawk Blade Map.

For the UH-60, the Matlab code in Appendix E converts the magnitude of the detailed adjustment on the given blade to a positive or negative, real or imaginary number in accordance with Figure 9 and Equation 5. The complex numbers for each adjustment type (weight, pitch link, trim tab) were then summed, thus producing a single complex number for each adjustment type. This complex adjustment vector was then converted back into real values of magnitude and phase. Table 2 contains sample calculations for two different sets of pitch link adjustments. These two sets of adjustments represent the same reduced adjustment vector, thus emphasizing the fact that the effects of the TON can be removed from the analysis. A similar mapping can be demonstrated for the AH-64A/D adjustments.

Table 2. Sample Calculation. Conversion of UH-60 Pitch Link adjustments into a Reduced Adjustment Vector.

Adjustment Set 1							
Blade Color	Yellow	Blue	Red	Black			
Pitch Move	2	1	1	2			
Complex Value	2	-i	-1	2i			
Complex Vector	1 + i						
Real Vector	Mag:	1.4142	Phase: 45 degrees				
	Adjustr	nent Set	2				
Blade Color	Yellow	Blue	Red	Black			
Pitch Move	-1	-2	-2	-1			
Complex Value	-1	2i	2	-i			
Complex Vector	1 + i						
Real Vector	Mag:	1.4142	Phase:	45 degrees			

3.4 Overview of Analysis Methods

With the effects of the TON and SOE effectively removed from the data, the full capabilities of the AEN and VPN could be analyzed. Two methods were used to extract information from the Adjustment Evaluation Networks and the Vibration Prediction Network.

The first method used a graphical and statistical comparison of the reduced adjustment sets of PC-GBS to the reduced adjustment sets of a linear algorithm based on the AVA sensitivity coefficients. The second method also relied heavily on graphical and statistical comparisons; however, the comparisons were made with multiple sets of *ad hoc* linear sensitivity coefficients derived from the PC-GBS. Both methods were applied to databases representative of the full spectrum of vibration regimes.

3.5 Explanation of Vibration Ranges

The comparison of the neural network algorithm and the linear algorithm was carried out for multiple flights in each of the four vibration categories, Good, Above Goal, Caution, and Exceed. A vibration category is assigned to each flight based on the highest vibration magnitude encountered during the flight. Table 3 shows the vibration magnitude ranges associated with each category by type of aircraft. By analyzing the full spectrum of vibration categories, non-linear effects associated with vibration magnitude should be revealed.

Table 3. Vibration Magnitude Ranges by Category

Category	UH-60	AH-64A/D
Good Vert (Lat)	0.0 - 0.25 (0.0 - 0.2)	0.0 - 0.3 (0.0 - 0.2)
Above Vert (Lat)	0.25 - 0.5 (0.2 - 0.5)	0.3 - 0.5 (0.2 - 0.5)
Caution Vert (Lat)	0.5 - 0.8 (0.5 - 0.8)	0.5 - 0.8 (0.5 - 0.8)
Exceed Vert (Lat)	0.8+ (0.8+)	0.8+ (0.8+)

3.6 Calculating the AVA Adjustment Set

The Matlab codes of Appendices E, F, and G were used to calculate reduced AVA adjustments for the UH-60, AH-64A, and AH-64D respectively, using equation (6).

$$[Adj]_{M\times 1} = [C]_{N\times M} \setminus [\Delta Vib]_{N\times 1}$$
 (6)

In this equation, the adjustment set produces the vibration response, ΔVib , when applied to the main rotor system. Since we wish to zero out our measured vibrations, the ΔVib in equation (6) is set to the negative value of our measured vibration vector.

The C matrix is comprised of the AVA sensitivity coefficients from Appendix A. Since Equation (6) is overdetermined (more equations than unknown), the Matlab Left Divide operation, \, essentially solves Equation (7) where ε is a vector that, when added to ΔVib , satisfies the equality.

$$[Adj]_{M\times 1} = [C]_{N\times M} \setminus ([\Delta Vib]_{N\times 1} + [\varepsilon]_{NX1})$$
(7)

The value for ε is calculated such that the sum of the squares of its magnitudes is minimized. This value for ε may be viewed as a predicted vibration vector following application of the Adj vector; however, it corresponds to a reduced adjustment set that has not been distributed to actual rotor blades. Due to round off error associated with mechanical limitations, i.e. weight adjustments in whole ounce increments, the predicted vibration vector will change after a detailed adjustment set has been determined.

3.7 The Ad Hoc Sensitivity Coefficient Method

The second method used in this study offered a good deal more insight into the neural network's mathematical nature than the first method. In the second method, an ad hoc sensitivity coefficient matrix was created for each flight by using the PC-GBS as an adjustment/vibration simulator. This method not only allowed for a straightforward comparison of the ad hoc coefficients to those of AVA, but also to ad hoc coefficients of other flights. In this manner, specific flight regimes could be studied for signs of non-linearity.

3.7.1 Constructing the Ad-Hoc Sensitivity Coefficient Matrix.

The procedures for determining a set of linear sensitivity coefficients were discussed in detail in section 2.8.3. These same procedures were followed in order to determine the ad hoc sensitivity coefficients from PC-GBS. Equation (3), repeated here for convenience, shows the mathematical model used to determining each coefficient.

$$C_{n,m} = \frac{Vib_{after_n} - Vib_{before_n}}{Adj_m}$$
(3)

To determine the ad hoc coefficients, the PC-GBS was used to predict the vibration vector, $Vib_{after\,n}$, following the application of a single adjustment, Adj_m , to a flight with measured vibration, $Vib_{before\,n}$. This process was repeated for each adjustment type in order to populate the ad hoc sensitivity matrix for each flight.

3.8 Database Entries

Table 4 shows an example of a database entry for a single UH-60 flight. The AVA comparison method uses the measured vibrations, the detailed adjustment set, and their corresponding predicted vibrations. The ad hoc coefficient method uses additional vibration predictions based on application of single adjustment moves to single blades using the Manual Solution option. In the case of Table 4, the smallest allowable adjustment moves were used with PC-GBS to produce the ad hoc predictions.

For each flight, a second database was created using the largest allowable adjustment moves. Table 5 indicates the smallest and largest allowable moves for each aircraft considered in this study. The reasoning behind comparing ad hoc coefficient matrices based on small versus large adjustment moves was to discover non-linearity as a function of adjustment magnitude.

Table 4. Typical database entry for the UH-60 Blackhawk. Magnitude is in IPS. Weight (Wt) is in ounces, Pitch Links (P/L) is in Flats, and Tab is in Mils. Data entered by hand.

	Measure	d Vib	Detaile	d Adj		Ad Hoc Pre	ediction		Ad Hoc Pre	ediction		Ad Hoc Pr	ediction
Batch	Before	Before	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
1	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.032707	247	0.0197	85	5	0.069268	307	1	0.051184	152	2	0.041347	198
Hover A-B	0.083903	82	0.01359	322		0.065411	85		0.1288	108		0.096912	91
80Kt A-B	0.045817	167	0.047175	220		0.048443	188		0.067723	147		0.051565	155
120Kt A-B	0.121328	70	0.072691	59		0.103722	71		0.149222	85		0.132964	76
145Kt A-B	0.064676	79	0.02042	143		0.047172	84		0.100951	102		0.075388	91
Hover A+B	0.164067	274	0.156546	268		0.164286	274		0.177728	274		0.172191	272
80Kt A+B	0.117083	323	0.074428	285		0.116287	323		0.091119	303		0.100755	307
120Kt A+B	0.149976	349	0.008687	244		0.147891	349		0.080251	342		0.096581	336
145Kt A+B	0.181986	1	0.087178	108		0.179131	1		0.097419	360		0.097789	354
	Yell	ow			Blue			Re	ed			Black	
	Nt P/	L .	Tab	Wt	P/L	Tab	Wt	P/	L Tal	b	Wt	P/L	Tab
Detailed	7 ()	0	-6	-2	0	0	1	-6		0	0	-7

Table 5. Adjustment Move Sizes used to determine the ad hoc coefficients.

	UH-60	UH-60	AH-64	AH-64
Weight	5 oz	80 oz	113 grams	1017 grams
Pitch Link	1 Notch	30 Notches	0.5 flats	12 flats
Trim Tab	2 Mils	20 Mils	0.5 degrees	5 degrees

3.9 Chapter Summary

The purpose of this study was to search for non-linear relationships, as learned by a trained neural network, between main rotor adjustments and their resulting change in vibrations. This comparison was made, in part, with the use of a linear algorithm based on the AVA sensitivity coefficients of each aircraft.

Comparisons were made over a broad spectrum of measured vibration amplitudes in an effort to discover whether the shape of the adjustment mapping changes due to the roughness or smoothness of the test flight. The ad hoc coefficient matrices were constructed using both small and large adjustment moves in an effort to discover non-linear effects based on adjustment amplitude. By using these two approaches, the two avenues for non-linear effects have been rigorously explored and any non-linear effects should reveal themselves in the graphical and statistical analysis.

IV. Analysis and Results

4.1 Introduction

The Blackhawk, Apache, and Longbow were studied over a broad spectrum of vibration and adjustment magnitudes. A solid picture has been developed as to how the PC-GBS converts measured vibration vectors into adjustment vectors. Using graphical and statistical analysis, the objectives of this thesis have been met.

4.2 Comparison of PC-GBS Adjustments to AVA Adjustments

A linear algorithm was created for each aircraft based on the sensitivity coefficients of the US Army's Aviation Vibration Analyzer. Figure 10 is a bar chart of the 20 UH-60 flights included in this study. The height of each bar represents the magnitude of the difference between reduced adjustment vectors as determined by the AVA algorithm and the PC-GBS algorithm. Differences that do not exceed the basic adjustment unit are considered to represent identical adjustment calculations.

Figure 10. UH-60 Bar Chart Comparison of AVA to PC-GBS. This figure shows the difference between PC-GBS adjustments and AVA adjustments.

Only the Pitch Link and Trim Tab adjustment differences are depicted in Figure 10 as AVA does not produce weight adjustments based on flight data for the UH-60. It is obvious that the amount of difference between the two adjustment sets is significant. These differences were calculated by measuring the length of the vector separating an individual AVA solution from its counterpart PC-GBS solution. These quantities are graphically depicted in Figure 11.

Figure 11. Graphical Depiction of Vector Difference.

Figure 12 shows the magnitude differences between the AH-64A adjustment sets. Again, for the twenty flights considered, the differences between the neural network solution and the AVA solution are often large. This does not imply that a non-linear mapping exists in the PC-GBS. It only means that AVA and PC-GBS produce very different adjustments for the same vibration vector.

Figure 12. AH-64A Bar Chart Comparison of AVA to PC-GBS. This figure shows the difference between PC-GBS adjustments and AVA adjustments.

Figure 13 shows the magnitude differences between the AH-64D adjustment sets. Unlike the previous comparisons, here the adjustment sets are identical. This indicates that the PC-GBS has learned a linear mapping for the AH-64D that is a near perfect match to the AVA coefficients. This simple analysis has helped to show the similarity of the two algorithms for one aircraft in this study; however, a different method was used to better understand the other two.

Figure 13. AH-64D Bar Chart Comparison of AVA to PC-GBS. This figure shows the difference between PC-GBS adjustments and AVA adjustments.

4.3 Ad Hoc Coefficient Method

In order to draw conclusions about the characteristics of the adjustment space for the UH-60 and the AH-64A, sets of ad hoc sensitivity coefficients were developed for every flight. These ad hoc coefficients were analogous to the AVA coefficients of Appendix A. These new coefficients were then used to calculate adjustment sets parallel to those of the PC-GBS for the 20 flights analyzed.

4.3.1 Small Moves Ad Hoc Coefficient Analysis.

Figure 14 is the polar plot of the UH-60 weight adjustment sets as determined by the ad hoc coefficients and the PC-GBS for all 20 flights. The ad hoc coefficients used in this set of analyses were developed using the smallest adjustment moves allowable.

Figure 14. UH-60 Small Moves Ad Hoc Weight Adjustments. This chart represents 20 flights as calculated by the PC-GBS (+) and the small moves ad hoc sensitivity coefficients (O).

For the majority of flights, the + and O markings are on top of one another. This indicates that the adjustment sets as calculated by the ad hoc coefficients and the AEN are nearly identical. The largest magnitude difference between the PC-GBS weight adjustments and those of the ad hoc method is 2.178 oz.

Similar polar plots could be generated for the AH-64A and AH-64D; however, a more concise technique for observing similarities in parallel adjustment sets is to tabulate the largest magnitude of dissimilarity for each adjustment type (weight, pitch link, tab).

For every flight, a difference vector separating parallel adjustments was determined, as was shown in Fig 11. Table 6 contains the magnitude of the largest difference vector per adjustment type. As a reference, the table also contains the minimum adjustment unit that is mechanically allowable on the UH-60. Tables 7 and 8 contain similar information for the AH-64A and AH-64D.

Table 6. UH-60 Small Moves Ad Hoc Comparison. This table shows the largest difference between small moves ad hoc adjustment sets and PC-GBS adjustment sets.

UH-60	Weight	Pitch Link	Tab
Largest Adjustment Difference	2.178	1.253	4.699
Basic Adjustment Unit	1 oz	1 Notch	1 Mil

Table 7. AH-64A Small Moves Ad Hoc Comparison. This table shows the largest difference between small moves ad hoc adjustment sets and PC-GBS adjustment sets.

AH-64A	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Largest Adj Difference	43.78	0.417	0.960	0.838	0.471
Basic Adjustment Unit	52 grams	0.25 Flats	0.5 deg	0.5 deg	0.5 deg

Table 8. AH-64D Small Moves Ad Hoc Comparison. This table shows the largest difference between small moves ad hoc adjustment sets and PC-GBS adjustment sets.

AH-64D	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Largest Adj Difference	96.37	0.492	2.063	1.248	0.437
Basic Adjustment Unit	52 grams	0.25 Flats	0.5 deg	0.5 deg	0.5 deg

For all three aircraft, it is seen that the largest adjustment difference is usually greater than the basic adjustment unit. This indicates that the PC-GBS may, under certain circumstances, produce slightly different adjustment sets than the ad hoc linear coefficient algorithm.

Since the AH-64D has already been shown to behave like AVA, yet still has magnitude differences exceeding the minimum adjustment unit, the values noted in these tables should not be interpreted as proof of non-linearity in the AEN or VPN of PC-GBS.

4.3.2 Method of Root Mean Squares of the Small Moves Ad Hoc Coefficients.

During the course of this analysis, it was observed that the ad hoc coefficient matrices were virtually identical from flight to flight. For each type aircraft, the ad hoc coefficient matrices were summed into a single root-mean-square (RMS) coefficient matrix. All flights for each aircraft were then re-evaluated using the respective single RMS matrix. Tables 9, 10, and 11 are analogous to Tables 6-8 in that they show the maximum difference encountered between the PC-GBS solution and the ad hoc RMS solution. Also contained in these tables are the largest differences between individual ad hoc coefficient adjustments and PC-GBS adjustments from tables 6-8.

Table 9. UH-60 Comparison for RMS of Small Moves Ad Hoc. This Table shows the largest difference between RMS of small moves ad hoc and PC-GBS adjustment sets.

UH-60 Small Moves	Weight	Pitch Link	Tab
Largest Individual Difference	2.178	1.253	4.699
Largest RMS Difference	1.402	0.475	1.166
Basic Adjustment Unit	1 oz	1 Notch	1 Mil

Table 10. AH-64A Comparison for RMS of Small Moves Ad Hoc. This Table shows the largest difference between RMS of small moves ad hoc and PC-GBS adjustment sets.

AH-64A Small Moves	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Largest Individual Difference	43.78	0.417	0.960	0.838	0.471
Largest RMS Difference	33.901	0.410	0.426	0.363	0.337
Basic Adjustment Unit	52 grams	0.25 Flats	0.5 deg	0.5 deg	0.5 deg

Table 11. AH-64D Comparison for RMS of Small Moves Ad Hoc. This Table shows the largest difference between RMS of small moves ad hoc and PC-GBS adjustment sets.

AH-64D Small Moves	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Largest Individual Difference	96.37	0.492	2.063	1.248	0.437
Largest RMS Difference	14.698	0.066	0.219	0.125	0.043
Basic Adjustment Unit	52 grams	0.25 Flats	0.5 deg	0.5 deg	0.5 deg

The most important thing to learn from studying these tables is that, for each type of helicopter, a single set of linear sensitivity coefficients is able to produce reduced adjustment sets that are virtually identical to those of the AEN of PC-GBS. This is proof that the AEN calculates reduced adjustment sets using a linear mapping. Table 12 offers the standard deviation of the difference between PC-GBS adjustments and those produced with the RMS of the large-move ad hoc method. The values in this table are less than the basic adjustment unit, thus proving that a majority of ad hoc adjustments are identical to those of the PC-GBS. Figure 15 is a similar polar plot to figure 14 except that the single RMS matrix of the small moves ad hoc coefficients was used to calculate parallel adjustments to those of PC-GBS.

Table 12. Standard Deviation of Differences of RMS of Small Moves Ad Hoc. This table shows standard deviation of the difference in adjustments as determined by the PC-GBS and the RMS of the small move ad hoc coefficients.

	Weight	Pitch Link	Trim Tab		
UH-60	0.342 oz	0.1 Notch	0.36 Mil		
	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
AH-64A	7.86 g	0.10 Flats	0.12 deg	0.10 deg	0.08 deg
AH-64D	3.43 g	0.01 Flats	0.04 deg	0.03 deg	0.01 deg

Figure 15. Polar Chart of UH-60 Weight Adjustments. This chart represents 20 flights as calculated by the PC-GBS (+) and the single RMS of the small moves ad hoc sensitivity coefficients (O).

The preceding analysis included an equal distribution of flights from each of the four vibration categories. The results of that analysis showed a high degree of linearity exists in the AEN and VPN networks regardless of measured vibration magnitude. The next section will address the effects of high magnitude adjustments on the VPN.

4.3.3 Large Moves Ad Hoc Coefficient Analysis.

In order to determine whether large adjustment magnitudes produce non-linear predictions from the VPN, a second set of ad hoc coefficients was created for each flight using the maximum allowable adjustment magnitude of Table 5.

It was believed that these new coefficients would produce different adjustment sets than the previous small move coefficients if any non-linear mappings had been learned by the VPN. As tables 13-15 show, this is not the case. Here are tabulated the largest magnitude of the difference vector between adjustments as determined by PC-GBS and the large-move-ad-hoc-coefficients. Also contained in these tables are the largest differences between individual ad hoc coefficient adjustments and PC-GBS adjustments.

Table 13. UH-60 Large Moves Ad Hoc Comparison. This Table shows the largest difference between large moves ad hoc and PC-GBS adjustment sets.

UH-60 Large Moves Ad Hoc	Weight	Pitch Link	Tab
Largest Individual Difference	1.069	0.392	0.394
Largest RMS Difference	0.779	0.393	0.523
Basic Adjustment Unit	1 oz	1 Notch	1 Mil

Table 14. AH-64A Large Moves Ad Hoc Comparison. This Table shows the largest difference between large moves ad hoc and PC-GBS adjustment sets.

AH-64A	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Largest Individual Difference	37.938	0.672	0.596	0.333	0.366
Largest RMS Difference	39.219	0.647	0.486	0.360	0.318
Basic Adjustment Unit	52 grams	0.25 Flats	0.5 deg	0.5 deg	0.5 deg

Table 15. AH-64D Large Moves Ad Hoc Comparison. This Table shows the largest difference between large moves ad hoc and PC-GBS adjustment sets.

AH-64D	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Largest Individual Difference	16.369	0.076	0.259	0.106	0.063
Largest RMS Difference	9.786	0.041	0.151	0.055	0.026
Basic Adjustment Unit	52 grams	0.25 Flats	0.5 deg	0.5 deg	0.5 deg

These tables show that for the UH-60 and the AH-64D, the respective RMS values of the large moves coefficients produced adjustment sets that were virtually identical to those of the PC-GBS. For the AH-64A, a comparison of Tables 14 and 7 reveal that the RMS of the small moves ad hoc coefficients actually provides a better match to adjustments of the PC-GBS.

Figures 16, 17, and 18 illustrate the magnitude difference between adjustments as calculated by the PC-GBS and the single RMS matrix of the appropriate ad hoc coefficients for the three helicopters.

Figure 16. UH-60 Bar Chart Comparison of RMS of Large Moves to PC-GBS. This chart shows the magnitude difference between the PC-GBS adjustments and those based on the RMS of large move ad hoc coefficients. The red bar indicates the basic adjustment unit magnitude.

Figure 17. AH-64A Bar Chart Comparison of RMS of Small Moves to PC-GBS. This chart shows the magnitude difference between the PC-GBS adjustments and those based on the RMS of small move ad hoc coefficients. The red bar indicates the basic adjustment unit magnitude.

Figure 18. AH-64D Bar Chart Comparison of RMS of Large Moves to PC-GBS. This chart shows the magnitude difference between the PC-GBS adjustments and those based on the RMS of large move ad hoc coefficients. The red bar indicates the basic adjustment unit magnitude.

Figures 16-18 show that a single set of linear coefficients will almost always provide reduced adjustment sets that are identical to those calculated by the AEN. Table 16 contains the standard deviation of the difference between PC-GBS adjustments and those produced by the RMS of the appropriate ad hoc coefficients.

Table 16. Standard Deviation Between Ad Hoc RMS and PC-GBS Adjustments. This table shows standard deviation of the difference in adjustments as determined by the PC-GBS and the RMS of the indicated ad hoc coefficients.

	Weight	Pitch Link	Trim Tab		
UH-60 Large Moves RMS	0.187 oz	0.1 Notch	0.11 Mil		
	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
AH-64A Small Moves RMS	7.86 g	0.10 Flats	0.12 deg	0.10 deg	0.08 deg
AH-64D Large Moves RMS	2.63 g	0.01 Flats	0.04 deg	0.02 deg	0.01 deg

These standard deviation values are all less than the size of the basic adjustment unit.

This means that a vast majority of the reduced adjustments, as calculated by this RMS method, will produce identical detailed adjustments to those of the PC-GBS.

4.3.4 Ad Hoc Sensitivity Coefficients as Determined By PC-GBS.

Tables 17, 18, and 19 contain the RMS values of the ad hoc sensitivity coefficients for the UH-60, AH-64A, and AH-64D as determined in this study. The coefficients for the UH-60 and the AH-64D were determined by taking the RMS of the large move ad hoc sensitivity coefficients. The coefficients for the AH-64A where determined by taking the RMS of the small moves ad hoc sensitivity coefficients. These coefficients may be encoded into a linear algorithm such as AVA in order to produce reduced adjustment sets that are virtually identical to those determined by the PC-GBS. Of course some form of post processing will be required in order to convert the reduced adjustment sets to detailed adjustment sets with the same performance capabilities as those of the PC-GBS.

Table 17. UH-60 Ad Hoc Sensitivity Coefficients. These coefficients were determined by taking the RMS of the large moves ad hoc coefficients.

	Weight		Pitch	Link	Tab	
UH-60	Mag	Phase	Mag	Phase	Mag	Phase
FPG100(A-B)	0.012437	335.1	0.061253	119.9	0.014479	146.7
Hover(A-B)	0.003777	258.1	0.062257	140.9	0.008360	128.8
80Kts(A-B)	0.003672	261.0	0.027984	114.8	0.005148	99.7
80Kts(A+B)	0.000018	309.2	0.043495	187.9	0.016227	197.2
120Kts(A-B)	0.003595	250.2	0.042692	127.8	0.007671	116.6
120Kts(A+B)	0.000057	273.8	0.068672	176.9	0.028640	191.4
145Kts(A-B)	0.003700	249.2	0.046724	132.0	0.008472	139.5
145Kts(A+B)	0.000041	311.3	0.081355	182.9	0.040795	190.3
Hover(A+B)	0.000006	15.9	0.013415	278.9	0.004451	243.3

Table 18. AH-64A Ad Hoc Sensitivity Coefficients. These coefficients were determined by taking the RMS of the small moves ad hoc coefficients.

AH-64A	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Magnitude	ips/gram	ips/flat	ips/deg	ips/deg	ips/deg
FPG100(Lat)	0.000593	0.041779	0.000165	0.000139	0.000135
Hover(Lat)	0.000515	0.185371	0.028842	0.064399	0.104124
60Kt(Vert)	0.000358	0.030565	0.148199	0.250506	0.295098
80Kt(Vert)	0.000012	0.079075	0.334511	0.501796	0.751610
100Kt(Vert)	0.000009	0.129714	0.357461	0.546680	0.797509
120Kt(Vert)	0.000011	0.159954	0.440764	0.660609	0.969146
140Kt(Vert)	0.000018	0.235513	0.562146	0.824348	1.323498
Phase	deg	deg	deg	deg	deg
FPG100(Lat)	169.0	20.7	338.3	344.3	0.8
Hover(Lat)	166.4	54.7	71.1	61.6	51.3
60Kt(Vert)	224.9	220.0	247.9	246.0	259.4
80Kt(Vert)	44.0	268.5	251.5	264.2	262.3
100Kt(Vert)	101.2	267.4	261.6	256.1	260.3
120Kt(Vert)	42.5	248.6	252.5	256.0	260.2
140Kt(Vert)	22.9	246.1	243.6	249.8	238.2

Table 19. AH-64D Ad Hoc Sensitivity Coefficients. These coefficients were determined by taking the RMS of the large moves ad hoc coefficients.

AH-64D	Weight	Pitch Link	Tab 8-10	Tab 6-10	Tab 4-10
Magnitude	ips/gram	ips/flat	ips/deg	ips/deg	ips/deg
FPG101(Lat)	0.000491	0.044240	0.000000	0.000000	0.000000
Hover(Lat)	0.000456	0.155225	0.000000	0.000000	0.000000
60Kt(Vert)	0.000468	0.038996	0.159772	0.336765	0.647302
80Kt(Vert)	0.000452	0.063262	0.170617	0.287236	0.735197
100Kt(Vert)	0.000480	0.113166	0.187719	0.314955	0.655976
120Kt(Vert)	0.000451	0.180973	0.214903	0.372574	0.695178
140Kt(Vert)	0.000449	0.242108	0.305237	0.444347	0.903616
Phase	deg	deg	deg	deg	deg
FPG101(Lat)	163.0	15.5	165.9	165.9	165.9
Hover(Lat)	171.1	57.6	238.3	238.9	238.9
60Kt(Vert)	212.0	286.3	263.6	270.5	256.0
80Kt(Vert)	204.7	273.2	261.6	261.3	259.2
100Kt(Vert)	216.0	262.1	258.7	268.3	256.7
120Kt(Vert)	219.7	256.1	255.8	258.7	255.0
140Kt(Vert)	235.7	247.3	250.3	260.4	250.6

4.5 Chapter Summary

The Adjustment Evaluation Networks and the Vibration Prediction Network of the PC-GBS have been isolated and studied in detail. Graphical and statistical analyses have shown that in all vibration categories, the AEN calculates adjustment sets using a linear mapping. The prediction capabilities of the VPN have also been shown to behave in a purely linear fashion with respect to adjustment magnitude. This overall lack of non-linear behavior indicates that the neural networks of the PC-GBS have learned that a linear relationship exists between adjustments and vibration response, thus validating the linear assumption.

V. Conclusions and Recommendations

5.1 Chapter Overview

Due to the difficulty in making MRS adjustments on many helicopters, it was strongly believed that the linear assumption was flawed. For this reason, neural networks were used to determine a non-linear mapping of the solution space of main rotor vibrations in order to produce more accurate adjustments. This study has shown that the mapping of these networks is essentially linear. Therefore, the performance gains of the PC-GBS are not due to unique, non-linear mappings, but rather to accurate linear mappings and improved post-processing of the reduced adjustment sets.

5.2 Conclusions of Research

The goal of this study was to characterize the vibration/adjustment mapping as it is known to a trained neural network. This goal was achieved through analysis of the AEN and VPN in the PC-GBS. By studying multiple flights over a broad range of vibration and adjustment magnitudes, it was determined that the PC-GBS mappings can almost always be described accurately with linear sensitivity coefficients.

In a study conducted by Wroblewski et al [1], the PC-GBS algorithm outperformed the AVA algorithm by consistently producing adjustment sets for the AH-64 with fewer moves and lower predicted vibrations. It is now apparent that the success that the PC-GBS has enjoyed is not due to the inclusion of higher-order interactions in the vibration response, but rather to improved accuracy in a traditional linear mapping, the effects of the SOE, and other improvements.

The SOE has made large improvements in decreasing the chances of human error in main rotor smoothing iterations by selecting adjustment sets with minimal numbers of moves. While there is a slight tradeoff in predicted vibration levels, this is more than justified when these few adjustment moves are applied correctly the first time. Future rotor smoothing algorithms must also account for the human element in order to surpass the performance of the PC-GBS. Until the day that adjustment mechanisms are engineered to be error proof, mistakes will continue to reduce main rotor smoothing performance.

5.3 Significance of Research

Helicopter main rotor smoothing is an extremely expensive and time consuming task that must be periodically performed on all helicopters. Small improvements to the process have the potential to save millions of dollars annually. In recent years, efforts have been made to design non-linear algorithms for the task of main rotor smoothing. This research has shown that a set of non-linear neural networks have essentially learned that the vibration response is linear. Assuming that the neural networks in the PC-GBS are fully trained, the significance of this research is that the linear assumption is completely adequate for calculating adjustments. Software designers can safely continue to use the linear assumption and seek improvements to MRS performance elsewhere.

This research has also shown that a fair amount of disparity exists between the adjustments offered by the AVA algorithm and those of the PC-GBS, which is now known to be linear. Due to the improved performance that has been noted by Wroblewski et al, it is believed that the linear mapping of the PC-GBS is superior to that of AVA for the AH-64A and the UH-60. The mapping for the AH-64D is, of course, identical.

The US Army currently performs MRS procedures on these three aircraft with the Aviation Vibration Analyzer and, to a lesser extent, the PC-GBS. Until such time as the PC-GBS is used on all Army helicopters, the sensitivity coefficients that have been determined in this research are offered as a free upgrade to the AVA systems. An improvement in performance should be expected from incorporating these updated coefficients.

5.4 Recommendations for Action

One other area where the PC-GBS has shown great potential in improving MRS performance is the incorporation of the Solution Optimization Expert. The SOE improves the MRS process by selecting adjustment sets with minimal numbers of moves. This not only shortens maintenance time, but also minimizes the chances for error.

It is well known that human error is a common occurrence during adjustment application. For this reason, new adjustment mechanisms must be devised that reduce or eliminate the chances for mistakes. Something as simple as an engraved numbering scheme on the pitch links, much like on a micrometer, could virtually eliminate the chances of applying pitch adjustments in the wrong direction or on the wrong blade.

This research has shown that the linear assumption is still valid; however, linear algorithms must still be replaced. By their very nature, linear algorithms require that specific flight profiles be flown while vibration and track data are recorded. Pilot error can lead to poor data acquisition and therefore, poor adjustment sets. A rotor smoothing process that utilizes continuous vibration measurements could potentially alleviate the requirement of strict adherence to flight regimes. This type of system has been examined by Branhof et al [9] and has been determined to provide adjustments that improve vibration levels. Further efforts should be made to develop algorithms that do not require that specific flight profiles be flown while recording vibration data.

5.5 Summary

There are many improvements that still need to be made to the main rotor smoothing process. The ultimate goal is to one day have a system that can produce adjustment sets from a single set of flight data that will reduce any vibrations to within acceptable levels. This thesis has reported on one of the latest efforts in MRS algorithm modernization. While the use of neural networks in MRS applications has proven to be beneficial, the underlying method that the PC-GBS neural networks uses for mapping the solution space is not unique.

Appendix A: AVA Sensitivity Coefficients

UH60 Coefficients

Hover A - B

80Kts A + B

unit = Oz, Notches, Mils

adjustment = Hub Weight, Pitch Link, Trim Tabs

Coeff = {0.0 IPS/oz, 0 deg}, {0.046 IPS/notch, 147.3 deg}, {0.0162 IPS/mil, 146.7 deg}

Coeff = {0.0 IPS/oz, 0 deg}, {0.0410 IPS/notch, 196.2 deg}, {0.0296 IPS/mil, 196.2 deg} 80Kts A - B $Coeff = \{0.0 \ IPS/oz, \ 0 \ deg\}, \ \{0.0289 \ IPS/notch, \ 126.7 \ deg\}, \ \{0.0105 \ IPS/mil, \ 122.4 \ deg\}$ Coeff = {0.0 IPS/oz, 0 deg}, {0.0516 IPS/notch, 189.6 deg}, {0.0413 IPS/mil, 191.7 deg} 120Kts A - B Coeff = $\{0.0 \text{ IPS/oz}, 0 \text{ deg}\}, \{0.0369 \text{ IPS/notch}, 138.0 \text{ deg}\}, \{0.0113 \text{ IPS/mil}, 136.7 \text{ deg}\}$ 145Kts A + B Coeff = {0.0 IPS/oz, 0 deg}, {0.066 IPS/notch, 192.7 deg}, {0.053 IPS/mil, 192.0 deg} 145Kts A - B Coeff = {0.0 IPS/oz, 0 deg}, {0.046 IPS/notch, 147.0 deg}, {0.018 IPS/mil, 139.0 deg} AH64A Coefficients adjustment = Hub Weight, Pitch Link, Tab 8-10, Tab 6-10, Tab 4-10 units = Grams, Flats, Degrees, Degrees, Degrees FPG100 LAT Coeff = {.00033 IPS/gram, 165°}, {.044 IPS/flat,21°}, {0 IPS/°, 0°}, {0,0}, {0,0} Hover LAT Coeff = {.00037 IPS/gram, 169°}, {.143 IPS/flat, 51°}, {0 IPS/°, 0°}, {0,0}, {0,0} **60K VERT** Coeff = {.000331 IPS/gram, 231°}, {.054 IPS/flat, 274°}, {.141 IPS/°, 255°}, {.255 IPS/°, 246°}, {.286 IPS/°, 273°} Coeff = {.000269 IPS/gram, 2349}, {.062 IPS/flat, 2839}, {.227 IPS/9, 2679}, {.329 IPS/9, 2609}, {.363 IPS/9, 2709} 100K VERT Coeff = {.000390 IPS/gram, 232°}, {.106 IPS/flat, 265°}, {.264 IPS/°, 269°}, {.434 IPS/°, 260°}, {.485 IPS/°, 273°} Coeff = {.000369 IPS/gram, 242°}, {.156 IPS/flat, 240°}, {.405 IPS/°, 262°}, {.613 IPS/°, 253°}, {.630 IPS/°, 266°} 140K VERT Coeff = {.000287 IPS/gram, 250°}, {.224 IPS/flat, 239°}, {.436 IPS/°, 249°}, {.664 IPS/°, 245°}, {.689 IPS/°, 267°}

AH64D Coefficients

adjustment = Hub Weight, Pitch Link, Tab 8-10, Tab 6-10, Tab 4-10 units = Grams, Flats, Degrees, Degrees, Degrees

FPG100 LAT

Coeff = $\{.0004936 \text{ IPS/gram}, 163.0^{\circ}\}, \{.04448 \text{ flat/}^{\circ}, 15.5^{\circ}\}, \{0 \text{ IPS/}^{\circ}, 0^{\circ}\}, \{0, 0^{\circ}$

Hover I AT

Coeff = $\{.0004580 \text{ IPS/gram}, 171.2^{\circ}\}, \{.1560 \text{ flat/}^{\circ}, 57.5^{\circ}\}, \{0 \text{ IPS/}^{\circ}, 0^{\circ}\}, \{0, 0\}, \{0, 0^{\circ}\}\}$

60KTA VERT

 $Coeff = \{.0004696 \ IPS/gram, \ 211.9 \ ^{\circ}\}, \ \{.03924 \ flat/^{\circ}, \ 286.6^{\circ}\}, \ \{.1605 \ IPS/^{\circ}, \ 263.5^{\circ}\}, \ \{.3385 \ IPS/^{\circ}, \ 270.6^{\circ}\}, \ \{.6507 \ IPS/^{\circ}, \ 256.1^{\circ}\} \}$

80KTA VERT

100KTA VERT

 $Coeff = \{.0004825 \ IPS/gram,\ 215.9^{\circ}\},\ \{.1137 \ flat/^{\circ},\ 262.0^{\circ}\},\ \{.1888 \ IPS/^{\circ},\ 258.8^{\circ}\},\ \{.3168 \ IPS/^{\circ},\ 268.4^{\circ}\},\ \{.6596 \ IPS/^{\circ},\ 256.7^{\circ}\}$

120KTA VERT

 $Coeff = \{.0004547 \ IPS/gram, 219.6^{\circ}\}, \\ \{.1819 \ flat/^{\circ}, 256.1^{\circ}\}, \\ \{.2161 \ IPS/^{\circ}, 255.8^{\circ}\}, \\ \{.3747 \ IPS/^{\circ}, 258.6^{\circ}\}, \\ \{.6992 \ IPS/^{\circ}, 255.0^{\circ}\}, \\ \{.6992 \ IPS/^{\circ}\}, \\ \{.6992 \$

140KTA VERT

 $Coeff = \{.0004519 \ IPS/gram,\ 235.6^{\circ}\},\ \{.2434 \ flat/^{\circ},\ 247.2^{\circ}\},\ \{.3071 \ IPS/^{\circ},\ 250.3^{\circ}\},\ \{.4467 \ IPS/^{\circ},\ 260.5^{\circ}\},\ \{.9085 \ IPS/^{\circ},\ 250.5^{\circ}\}\}$

Appendix B: UH-60 Database

Note: All data in this appendix was manually typed into Microsoft Excel spreadsheets. The data was originally presented with a graphic user interface in the PC-GBS program.

		UH-60 Flig	jht Log		
Flight #	Туре	BUNO	Date	Time	Vib Category
1	UH-60	79-23280	5/14/2005	103937	good
2	UH-60	81-23550	11/27/2003	104807	good
3	UH-60	80-23470	2/15/2005	161139	good
4	UH-60	84-23981	8/20/2004	115128	good
5	UH-60	95-26658	2/28/2004	100113	good
6	UH-60	80-23470	10/26/2003	112939	above
7	UH-60	80-23470	2/13/2005	130352	above
8	UH-60	79-23280	4/2/2003	181046	above
9	UH-60	79-23280	8/22/2003	102945	above
10	UH-60	79-23280	10/9/2003	100510	above
11	UH-60	79-23280	10/21/2003	103923	above
12	UH-60	84-23981	2/28/2003	181616	above
13	UH-60	84-23981	1/5/2004	44045	above
14	UH-60	83-23921	12/2/2005	162722	caution
15	UH-60	80-23470	2/13/2005	145852	caution
16	UH-60	80-23470	2/13/2005	121244	caution
17	UH-60	95-26659	3/17/2004	102442	caution
18	UH-60	81-23550	8/4/2003	114453	caution
19	UH-60	84-23981	11/23/2003	81228	exceed
20	UH-60	91-26330	9/16/2003	132022	exceed

				VM	EP Solu	tion						
Flight #		Yellow			Blue			Red		Black		
Ŭ	Wt	P/L	Tab	Wt	P/L	Tab	Wt	P/L	Tab	Wt	P/L	Tab
1	7	0	0	-6	-2	0	0	1	-6	0	0	-7
2	0	0	2	0	0	-7	0	1	0	0	-2	0
3	-7	-1	0	-5	0	0	0	0	0	0	0	0
4	0	-1	3	0	0	4	0	0	0	0	1	0
5	0	0	0	10	0	0	5	-2	0	0	0	5
6	16	0	0	-11	-3	0	0	0	0	0	0	0
7	-11	0	0	-16	0	-4	0	-2	0	0	-3	0
8	20	0	6	16	0	3	0	-2	0	0	0	0
9	11	0	-2	0	2	0	0	-1	0	-13	0	10
10	0	0	0	0	0	-3	0	-2	2	0	-3	0
11	0	0	0	0	0	-4	6	-2	9	-6	-3	0
12	-14	0	-8	9	2	3	0	-1	0	0	0	0
13	0	4	0	-6	0	0	-44	0	6	0	0	0
14	9	0	0	7	0	0	0	0	-16	0	0	-2
15	-12	0	0	-14	0	0	0	1	0	0	-2	-11
16	-16	0	0	-26	0	0	0	-4	9	0	-5	20
17	-11	-2	7	-15	0	0	0	0	0	0	-4	20
18	-8	0	0	-9	0	0	0	0	10	0	-4	19
19	-28	0	0	-16	0	-16	0	0	20	0	0	0
20	0	0	0	-8	0	15	0	0	20	0	0	0

Full Soln

Flight #	Before	Before	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
1	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.032707	247	0.0197	85	5	0.069268	307	1	0.051184	152	2	0.041347	198
Hover A-B	0.083903	82	0.01359	322		0.065411	85		0.1288	108		0.096912	91
80Kt A-B	0.045817	167	0.047175	220		0.048443	188		0.067723	147		0.051565	155
120Kt A-B	0.121328	70	0.072691	59		0.103722	71		0.149222	85		0.132964	76
145Kt A-B	0.064676	79	0.02042	143		0.047172	84		0.100951	102		0.075388	91
Hover A+B	0.164067	274	0.156546	268		0.164286	274		0.177728	274		0.172191	272
80Kt A+B	0.117083	323	0.074428	285		0.116287	323		0.091119	303		0.100755	307
120Kt A+B	0.149976	349	0.008687	244		0.147891	349		0.080251	342		0.096581	336
145Kt A+B	0.181986	1	0.087178	108		0.179131	1	·	0.097419	360		0.097789	354

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
2	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.123726	121	0.047083	100	5	0.081083	97	1	0.18681	121	2	0.152567	126
Hover A-B	0.027149	201	0.052165	29		0.041329	222		0.081229	158		0.037668	174
80Kt A-B	0.004418	64	0.02832	15		0.013692	264		0.031764	109		0.014868	91
120Kt A-B	0.029976	147	0.02966	62		0.032046	180		0.073063	136		0.045286	137
145Kt A-B	0.04869	261	0.067846	308		0.066435	257		0.042052	197		0.042265	239
Hover A+B	0.163819	16	0.155879	11		0.163762	16		0.162791	11		0.157802	13
80Kt A+B	0.125195	50	0.132697	32		0.124163	51		0.09655	69		0.09819	61
120Kt A+B	0.183337	88	0.125869	60		0.183109	89		0.197626	109		0.179883	107
145Kt A+B	0.176624	137	0.089133	186		0.178737	138		0.243284	152		0.238748	154

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
3	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.03638	331	0.023388	70	5	0.096599	333	1	0.036389	92	2	0.005196	351
Hover A-B	0.084397	59	0.127113	26		0.066325	55		0.112495	94		0.091682	70
80Kt A-B	0.141022	224	0.121409	236		0.156057	228		0.134744	212		0.135442	220
120Kt A-B	0.188868	226	0.171848	242		0.205598	228		0.188196	213		0.184501	221
145Kt A-B	0.104637	101	0.093494	67		0.090338	108		0.147993	111		0.119648	106
Hover A+B	0.081093	167	0.087003	159		0.08104	167		0.076929	176		0.083628	173
80Kt A+B	0.078236	214	0.044569	240		0.079445	214		0.120591	205		0.111787	209
120Kt A+B	0.067702	247	0.078086	301		0.068724	246		0.114155	211		0.113317	221
145Kt A+B	0.139082	125	0.117409	91		0.140772	126		0.198099	147		0.192785	149

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
4	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.065383	16	0.035052	12	5	0.117679	356	1	0.078001	67	2	0.050358	44
Hover A-B	0.030869	289	0.081646	291		0.047527	276		0.041575	165		0.015436	263
80Kt A-B	0.042057	84	0.025012	71		0.024201	88		0.068372	97		0.052784	88
120Kt A-B	0.088015	150	0.069855	165		0.087869	162		0.129982	143		0.102513	146
145Kt A-B	0.024951	13	0.028618	322		0.020008	326		0.04203	102		0.020133	60
Hover A+B	0.098902	58	0.103693	66		0.098717	58		0.088973	52		0.089629	57
80Kt A+B	0.046546	308	0.027918	291		0.046047	306		0.046151	249		0.047083	265
120Kt A+B	0.152539	332	0.101525	332		0.15071	331		0.093166	313		0.112091	312
145Kt A+B	0.087242	309	0.014692	197		0.085445	308		0.078107	247		0.087801	250

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
5	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.164886	8	0.052168	197	5	0.217559	359	1	0.151814	31	2	0.142606	16
Hover A-B	0.110756	317	0.0843	177		0.120421	309		0.047315	311		0.09254	318
80Kt A-B	0.138877	332	0.040756	11		0.145008	326		0.117165	341		0.132097	336
120Kt A-B	0.165934	305	0.057836	250		0.175768	300		0.122132	304		0.149506	306
145Kt A-B	0.15523	329	0.016932	324		0.158113	323		0.110025	337		0.136924	331
Hover A+B	0.048921	168	0.035917	229		0.048873	168		0.045825	184		0.051937	178
80Kt A+B	0.195477	92	0.126838	125		0.195211	92		0.195851	105		0.189549	102
120Kt A+B	0.073415	41	0.104117	236		0.071677	42		0.053381	107		0.036529	96
145Kt A+B	0.249527	44	0.062149	321	, and the second	0.247478	44		0.193362	60		0.1844	59

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
6	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.071631	169	0.039252	276	5	0.020056	217	1	0.123017	147	2	0.101456	162
Hover A-B	0.235183	49	0.073489	329		0.218362	46		0.240397	64		0.238165	53
80Kt A-B	0.121482	52	0.027723	352		0.105876	48		0.136762	63		0.128917	56
120Kt A-B	0.163799	55	0.013991	300		0.146516	54		0.181446	69		0.171929	60
145Kt A-B	0.283022	45	0.116078	18		0.266013	43		0.288889	54		0.28187	49
Hover A+B	0.125287	168	0.088157	159		0.12524	168		0.121108	174		0.127871	172
80Kt A+B	0.40637	116	0.284325	125		0.406641	117		0.422615	122		0.413406	121
120Kt A+B	0.27158	89	0.062613	97		0.271377	89		0.282599	103		0.265621	102
145Kt A+B	0.085521	77	0.167117	280		0.084935	79		0.102317	130		0.09478	134

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
7	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.343202	265	0.046506	95	5	0.367909	273	-1	0.394559	270	2	0.32991	260
Hover A-B	0.091605	278	0.161325	62		0.108966	274		0.143072	295		0.076931	271
80Kt A-B	0.224173	222	0.078613	207		0.238623	224		0.233878	228		0.218869	219
120Kt A-B	0.39421	236	0.219135	232		0.411574	236		0.409215	241		0.38694	233
145Kt A-B	0.110259	205	0.110074	95		0.124712	210		0.106653	229		0.119414	197
Hover A+B	0.091364	141	0.092323	169		0.091223	141		0.101648	136		0.089653	146
80Kt A+B	0.080271	273	0.084629	196		0.080538	272		0.08742	302		0.094859	252
120Kt A+B	0.265887	288	0.15114	261		0.265406	287		0.296279	300		0.265814	274
145Kt A+B	0.139524	4	0.088816	94		0.136674	4		0.218119	4		0.05463	355

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
8	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.090777	122	0.023738	216	5	0.05125	84	1	0.153956	122	-2	0.06588	113
Hover A-B	0.110572	17	0.134221	127		0.101542	8		0.090868	52		0.116635	9
80Kt A-B	0.212216	328	0.13177	318		0.219209	324		0.188618	333		0.21861	326
120Kt A-B	0.32375	321	0.176085	313		0.328891	318		0.280973	323		0.336991	320
145Kt A-B	0.018327	342	0.16691	155		0.024277	294		0.0336	117		0.033726	331
Hover A+B	0.111057	312	0.138663	293		0.111222	312		0.122806	309		0.108312	317
80Kt A+B	0.361304	337	0.189272	316		0.360281	337		0.323352	333		0.386371	340
120Kt A+B	0.461297	334	0.166561	300		0.45943	334		0.396855	330		0.507014	338
145Kt A+B	0.333519	9	0.161466	131		0.330687	9		0.249109	11		0.413915	9

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
9	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.247293	120	0.053574	191	-5	0.301827	127	1	0.310507	120	2	0.275717	123
Hover A-B	0.029988	97	0.114688	140		0.048492	91		0.087807	128		0.046248	110
80Kt A-B	0.154695	333	0.10163	316		0.149204	339		0.1328	340		0.147883	336
120Kt A-B	0.075135	320	0.035242	232		0.06992	334		0.033244	336		0.06002	326
145Kt A-B	0.073574	343	0.017912	286		0.075849	357		0.040392	21		0.056884	351
Hover A+B	0.172685	306	0.209098	305		0.172932	306		0.185022	304		0.177226	303
80Kt A+B	0.118899	324	0.180323	310		0.118026	323		0.092378	303		0.102162	308
120Kt A+B	0.078203	131	0.072629	265		0.079619	133		0.137788	153		0.120858	157
145Kt A+B	0.311925	113	0.084439	140		0.31296	113	·	0.349783	126		0.34161	127

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
10	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.141422	268	0.092054	4	5	0.174379	287	1	0.094671	247	2	0.128042	256
Hover A-B	0.20833	211	0.191414	152		0.222382	214		0.238706	196		0.212487	206
80Kt A-B	0.17198	257	0.092927	270		0.189913	257		0.150418	250		0.161925	256
120Kt A-B	0.284234	280	0.17768	299		0.299123	279		0.246274	276		0.268491	279
145Kt A-B	0.119453	230	0.058056	133		0.137225	232		0.122686	207		0.120867	221
Hover A+B	0.155949	299	0.176863	288		0.156142	299		0.168902	297		0.161464	296
80Kt A+B	0.372482	302	0.272648	300		0.3721	302		0.356858	295		0.365229	297
120Kt A+B	0.167834	291	0.01736	281		0.16723	290		0.153804	266		0.168196	270
145Kt A+B	0.070084	228	0.146776	148		0.072039	226	,	0.143597	203	, and the second	0.14812	207

B-3

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
11	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.094397	194	0.028446	131	5	0.061013	233	1	0.128226	166	2	0.118311	183
Hover A-B	0.096156	220	0.124352	115		0.112297	225		0.126183	190		0.098419	209
80Kt A-B	0.189777	287	0.139536	303		0.205902	284		0.161227	285		0.178636	287
120Kt A-B	0.15312	287	0.093446	331		0.167124	283		0.11329	278		0.13684	285
145Kt A-B	0.144485	204	0.091786	138		0.158739	208		0.166455	188		0.153684	198
Hover A+B	0.223468	301	0.228018	299		0.223659	301		0.236355	299		0.228745	299
80Kt A+B	0.276624	296	0.230493	319		0.276358	296		0.266003	287		0.273132	289
120Kt A+B	0.199556	236	0.035045	334		0.200924	235		0.244749	221		0.246428	226
145Kt A+B	0.30721	183	0.156248	129		0.310082	183		0.39244	183		0.393314	184

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
12	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.088372	303	0.040087	340	5	0.142768	316	1	0.025421	306	2	0.061214	290
Hover A-B	0.138989	236	0.044676	103		0.156993	238		0.148198	211		0.135446	229
80Kt A-B	0.074038	212	0.03868	133		0.087231	221		0.076244	190		0.070957	204
120Kt A-B	0.104176	265	0.065874	358		0.121074	262		0.078311	242		0.09079	259
145Kt A-B	0.189213	257	0.070583	314		0.207116	256		0.166941	243		0.181655	252
Hover A+B	0.023186	98	0.048864	119		0.022969	99		0.009461	98		0.016388	117
80Kt A+B	0.246438	239	0.087278	213		0.247341	239		0.27691	232		0.272864	235
120Kt A+B	0.278277	254	0.064167	2		0.279056	253		0.303205	240		0.310735	244
145Kt A+B	0.322668	237	0.07209	66		0.324228	236		0.378857	226		0.386504	227

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
13	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.457242	183	0.028405	324	5	0.405699	187	1	0.489631	177	2	0.482902	181
Hover A-B	0.147058	1	0.053746	232		0.142737	353		0.105347	23		0.135795	7
80Kt A-B	0.171925	60	0.071035	57		0.155019	58		0.189928	68		0.18043	63
120Kt A-B	0.214342	48	0.103124	77		0.197622	46		0.225867	59		0.220478	52
145Kt A-B	0.13403	329	0.118282	265		0.137117	322		0.08882	338		0.115646	331
Hover A+B	0.160661	92	0.131253	83		0.160441	92		0.147	91		0.152469	93
80Kt A+B	0.176284	9	0.097421	21		0.175006	9		0.131059	9		0.142106	7
120Kt A+B	0.20973	10	0.131168	43		0.207565	10		0.14083	16		0.149039	9
145Kt A+B	0.10178	292	0.079618	231		0.100729	290		0.109462	245		0.118944	247

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
14	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.043871	326	0.077443	179	5	0.103587	331	1	0.029493	83	2	0.012464	322
Hover A-B	0.250402	299	0.131275	278		0.263887	297		0.192677	292		0.232501	299
80Kt A-B	0.076905	324	0.02997	20		0.085938	314		0.053517	339		0.069111	331
120Kt A-B	0.164148	237	0.171274	194		0.181595	238		0.156085	221		0.156969	231
145Kt A-B	0.334668	321	0.185128	315		0.339695	318		0.287052	322		0.316082	321
Hover A+B	0.228697	89	0.172602	102		0.228478	89		0.215184	88		0.220307	90
80Kt A+B	0.444824	35	0.233458	63		0.443627	35		0.405011	38		0.412136	36
120Kt A+B	0.401959	15	0.102478	137		0.399825	15		0.33457	18		0.341561	15
145Kt A+B	0.644317	356	0.075764	255		0.641461	356		0.560175	355		0.560864	354

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
15	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.363445	249	0.044457	32	5	0.372994	259	1	0.328144	241	2	0.358174	244
Hover A-B	0.177773	202	0.128494	41		0.189922	206		0.216621	187		0.184672	197
80Kt A-B	0.256493	215	0.109086	253		0.26965	218		0.253309	209		0.252327	213
120Kt A-B	0.409914	219	0.195748	244		0.42562	220		0.412123	213		0.40729	216
145Kt A-B	0.214618	163	0.18547	83		0.217979	168		0.25717	158		0.231814	162
Hover A+B	0.074173	173	0.152435	165		0.074143	173		0.071581	183		0.077653	179
80Kt A+B	0.304634	276	0.037687	283		0.304827	276		0.309864	267		0.313194	270
120Kt A+B	0.579386	275	0.144156	297		0.579373	275		0.574319	268		0.58879	269
145Kt A+B	0.479439	271	0.137422	89	, i	0.47938	271		0.489705	261		0.499899	261

B-4

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
16	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.374782	269	0.090561	58	5	0.403091	277	1	0.3231	263	2	0.359229	265
Hover A-B	0.161809	285	0.158173	63		0.178094	282		0.116625	266		0.145586	282
80Kt A-B	0.222461	240	0.045509	248		0.239399	241		0.207602	233		0.214348	238
120Kt A-B	0.418754	261	0.24027	271		0.435896	260		0.390419	256		0.40572	260
145Kt A-B	0.04873	345	0.212789	42		0.048966	324		0.027232	58		0.03286	359
Hover A+B	0.163275	130	0.086611	142		0.163106	130		0.151703	133		0.159739	133
80Kt A+B	0.155919	152	0.113375	176		0.156862	152		0.19397	160		0.181803	160
120Kt A+B	0.416578	109	0.260885	98		0.417116	109		0.44748	117		0.428989	117
145Kt A+B	0.624346	102	0.279851	86		0.624957	102		0.642935	109		0.633334	110

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
17	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.031618	317	0.050796	59	5	0.090624	329	1	0.033769	106	2	0.005643	234
Hover A-B	0.117707	204	0.079119	36		0.13068	211		0.157628	183		0.124324	196
80Kt A-B	0.073185	186	0.041995	66		0.080352	199		0.08699	168		0.075076	178
120Kt A-B	0.076669	171	0.059912	59		0.082855	183		0.112975	156		0.087716	163
145Kt A-B	0.224682	199	0.117649	225		0.2376	202		0.2482	188		0.234957	195
Hover A+B	0.033688	339	0.069537	300		0.033768	339		0.042207	323		0.034119	324
80Kt A+B	0.232903	94	0.096333	66		0.23267	94		0.233676	105		0.227422	102
120Kt A+B	0.399486	99	0.084833	82		0.399681	100		0.420277	109		0.402528	108
145Kt A+B	0.574942	96	0.089234	116		0.575259	96		0.585438	104		0.575537	105

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
18	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.10891	151	0.050044	16	5	0.049047	147	1	0.166536	140	2	0.140336	150
Hover A-B	0.097986	189	0.056474	54		0.107456	199		0.148636	171		0.108782	181
80Kt A-B	0.058938	188	0.003668	189		0.066904	203		0.072991	166		0.060728	177
120Kt A-B	0.065231	187	0.023473	325		0.075608	198		0.096004	164		0.073046	174
145Kt A-B	0.119797	145	0.060929	39		0.117981	154		0.167161	142		0.138326	144
Hover A+B	0.115527	42	0.144143	29		0.115383	42		0.108682	36		0.106987	40
80Kt A+B	0.144347	147	0.099493	6		0.145216	147		0.180683	156		0.168551	156
120Kt A+B	0.450975	142	0.091338	63		0.452588	143		0.511043	147		0.493166	148
145Kt A+B	0.709512	146	0.080946	148		0.711889	146		0.778737	150		0.773768	150

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
19	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.065843	279	0.148752	218	5	0.111037	305	1	0.025188	206	2	0.050843	251
Hover A-B	0.198795	64	0.175332	18		0.180366	62		0.220988	80		0.206389	68
80Kt A-B	0.095744	76	0.077975	67		0.07789	76		0.119454	85		0.105878	79
120Kt A-B	0.226021	87	0.123039	62		0.209508	89		0.260607	93		0.240341	89
145Kt A-B	0.321385	81	0.255459	44		0.303864	82		0.353312	87		0.331272	84
Hover A+B	0.164591	216	0.056255	240		0.164717	216		0.171195	220		0.172808	217
80Kt A+B	0.588989	171	0.199789	198		0.590158	171		0.632033	172		0.619995	172
120Kt A+B	0.947801	168	0.314875	210		0.949888	169		1.01837	169		1.004095	170
145Kt A+B	1.537488	163	0.547287	187		1.540229	163		1.617413	164		1.614839	164

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
20	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.442209	204	0.064965	271	5	0.405373	210	1	0.454472	196	2	0.460267	201
Hover A-B	0.174997	177	0.077556	318		0.18026	183		0.230026	168		0.188225	173
80Kt A-B	0.138393	102	0.10312	24		0.122097	105		0.166499	104		0.149506	102
120Kt A-B	0.135376	119	0.133645	9		0.125465	126		0.178895	122		0.151953	119
145Kt A-B	0.341969	151	0.154564	112		0.34101	154		0.388051	148		0.36026	150
Hover A+B	0.049651	199	0.115483	126		0.04972	199		0.053708	213		0.056565	205
80Kt A+B	0.459304	223	0.103606	169		0.46043	222		0.49719	220		0.490632	221
120Kt A+B	0.678619	229	0.036912	41		0.680173	229		0.725206	224		0.727371	226
145Kt A+B	1.151947	229	0.134108	242		1.15381	229		1.212255	226	, and the second	1.219836	227

B-5

Flight #	Before	Before	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
1	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.032707	247	0.0197	85	80	0.993553	333	30	1.813004	121	20	0.285169	153
Hover A-B	0.083903	82	0.01359	322		0.217932	256		1.909229	139		0.232944	114
80Kt A-B	0.045817	167	0.047175	220		0.293496	252		0.867441	117		0.127949	119
120Kt A-B	0.121328	70	0.072691	59		0.165645	250		1.345842	124		0.252069	96
145Kt A-B	0.064676	79	0.02042	143		0.231657	246		1.437952	130		0.208562	124
Hover A+B	0.164067	274	0.156546	268		0.164172	274		0.565151	277		0.244803	263
80Kt A+B	0.117083	323	0.074428	285		0.118343	323		1.222679	192		0.272916	218
120Kt A+B	0.149976	349	0.008687	244		0.151708	348		1.904632	178		0.434758	199
145Kt A+B	0.181986	1	0.087178	108		0.183913	0		2.252873	183		0.634939	193

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
2	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.123726	121	0.047083	100	80	0.894825	339	30	1.960873	120	20	0.405038	139
Hover A-B	0.027149	201	0.052165	29		0.317759	254		1.881627	142		0.17746	137
80Kt A-B	0.004418	64	0.02832	15		0.289636	261		0.842267	115		0.106583	98
120Kt A-B	0.029976	147	0.02966	62		0.282459	244		1.309011	128		0.179457	121
145Kt A-B	0.04869	261	0.067846	308		0.343268	251		1.369656	133		0.149647	156
Hover A+B	0.163819	16	0.155879	11		0.164222	16		0.416319	302		0.123108	343
80Kt A+B	0.125195	50	0.132697	32		0.124965	50		1.215092	184		0.230021	180
120Kt A+B	0.183337	88	0.125869	60		0.181511	88		2.071132	172	·	0.558862	173
145Kt A+B	0.176624	137	0.089133	186		0.173296	137		2.564042	180		0.931555	182

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
3	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.03638	331	0.023388	70	80	1.03471	335	30	1.813185	119	20	0.254791	146
Hover A-B	0.084397	59	0.127113	26		0.225102	265		1.888799	138		0.212508	107
80Kt A-B	0.141022	224	0.121409	236		0.416202	249		0.807597	124		0.119095	178
120Kt A-B	0.188868	226	0.171848	242		0.467965	241		1.272416	136		0.199781	180
145Kt A-B	0.104637	101	0.093494	67		0.215097	234		1.497649	130		0.260065	125
Hover A+B	0.081093	167	0.087003	159		0.080646	167		0.380723	268		0.133662	207
80Kt A+B	0.078236	214	0.044569	240		0.07812	215		1.380062	189		0.4014	201
120Kt A+B	0.067702	247	0.078086	301		0.068932	249		2.091228	179		0.614206	197
145Kt A+B	0.139082	125	0.117409	91		0.135666	125		2.527629	180		0.886971	182

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
4	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.065383	16	0.035052	12	80	1.047449	337	30	1.826668	118	20	0.252719	135
Hover A-B	0.030869	289	0.081646	291		0.330151	261		1.849551	141		0.139282	133
80Kt A-B	0.042057	84	0.025012	71		0.252749	261		0.878326	113		0.144195	95
120Kt A-B	0.088015	150	0.069855	165		0.287559	232		1.366173	129		0.231705	129
145Kt A-B	0.024951	13	0.028618	322		0.283846	253		1.394808	131		0.156444	132
Hover A+B	0.098902	58	0.103693	66		0.099073	58		0.335922	290		0.013274	17
80Kt A+B	0.046546	308	0.027918	291		0.047845	308		1.285933	190		0.312348	205
120Kt A+B	0.152539	332	0.101525	332		0.154667	331		1.928613	179		0.46573	203
145Kt A+B	0.087242	309	0.014692	197		0.09065	309		2.399551	185		0.780793	196

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
5	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.164886	8	0.052168	197	80	1.135672	340	30	1.781108	115	20	0.198906	113
Hover A-B	0.110756	317	0.0843	177		0.371266	273		1.755722	141		0.059665	113
80Kt A-B	0.138877	332	0.040756	11		0.362199	282		0.732769	108		0.112171	19
120Kt A-B	0.165934	305	0.057836	250		0.405185	270		1.112223	128		0.02774	2
145Kt A-B	0.15523	329	0.016932	324		0.356016	275		1.25242	130		0.031173	81
Hover A+B	0.048921	168	0.035917	229		0.048475	168		0.38724	272		0.11165	218
80Kt A+B	0.195477	92	0.126838	125		0.194455	92		1.296957	179		0.331686	163
120Kt A+B	0.073415	41	0.104117	236		0.07329	39		2.002688	176		0.507608	187
145Kt A+B	0.249527	44	0.062149	321		0.249061	43		2.254299	179		0.621972	178

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
6	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.071631	169	0.039252	276	80	0.923969	334	30	1.882477	122	20	0.356794	151
Hover A-B	0.235183	49	0.073489	329		0.150736	308		1.869642	134		0.310739	81
80Kt A-B	0.121482	52	0.027723	352		0.195814	278		0.899455	108		0.205243	74
120Kt A-B	0.163799	55	0.013991	300		0.13535	268		1.336653	121		0.272268	85
145Kt A-B	0.283022	45	0.116078	18		0.122263	321		1.440219	121		0.317302	77
Hover A+B	0.125287	168	0.088157	159		0.124841	168		0.376096	261		0.171045	198
80Kt A+B	0.40637	116	0.284325	125		0.405112	116		1.481608	173		0.558549	151
120Kt A+B	0.27158	89	0.062613	97		0.269737	89	·	2.08241	169		0.5765	164
145Kt A+B	0.085521	77	0.167117	280		0.083311	75		2.412573	181		0.784034	185

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
7	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.343202	265	0.046506	95	80	1.154576	319	-30	2.129105	294	20	0.32885	214
Hover A-B	0.091605	278	0.161325	62		0.388697	263		1.934472	319		0.099537	157
80Kt A-B	0.224173	222	0.078613	207		0.487856	244		0.928616	282		0.190742	195
120Kt A-B	0.39421	236	0.219135	232		0.676483	242		1.449609	293		0.347157	213
145Kt A-B	0.110259	205	0.110074	95		0.382061	237		1.372509	308		0.237481	164
Hover A+B	0.091364	141	0.092323	169		0.090976	140		0.473521	106		0.11232	191
80Kt A+B	0.080271	273	0.084629	196		0.081306	273		1.298521	4		0.352912	210
120Kt A+B	0.265887	288	0.15114	261		0.268098	288		2.168018	350		0.603242	217
145Kt A+B	0.139524	4	0.088816	94		0.141326	3		2.577311	3		0.67606	192

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
8	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.090777	122	0.023738	216	80	0.92103	338	30	1.930995	120	20	0.375149	141
Hover A-B	0.110572	17	0.134221	127		0.26753	279		1.812448	138		0.162829	90
80Kt A-B	0.212216	328	0.13177	318		0.423857	289		0.67382	105		0.163615	357
120Kt A-B	0.32375	321	0.176085	313		0.497562	288		0.970806	123		0.195454	341
145Kt A-B	0.018327	342	0.16691	155		0.295825	253		1.387674	132		0.152936	137
Hover A+B	0.111057	312	0.138663	293		0.111411	312		0.499837	286		0.165589	282
80Kt A+B	0.361304	337	0.189272	316		0.362454	337		1.011703	198		0.236642	276
120Kt A+B	0.461297	334	0.166561	300		0.463386	334		1.649025	183		0.349527	245
145Kt A+B	0.333519	9	0.161466	131		0.335067	8		2.112659	182		0.483904	191

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
9	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.247293	120	0.053574	191	80	0.806763	345	30	2.088473	120	20	0.523627	134
Hover A-B	0.029988	97	0.114688	140		0.274036	256		1.890617	140		0.193434	124
80Kt A-B	0.154695	333	0.10163	316		0.37334	284		0.725277	107		0.123841	14
120Kt A-B	0.075135	320	0.035242	232		0.321469	263		1.208787	127		0.089399	97
145Kt A-B	0.073574	343	0.017912	286		0.300273	263		1.342468	130		0.106645	123
Hover A+B	0.172685	306	0.209098	305		0.173007	306		0.561767	287		0.227578	286
80Kt A+B	0.118899	324	0.180323	310		0.120161	323		1.22529	192		0.272465	218
120Kt A+B	0.078203	131	0.072629	265		0.075867	132		2.117212	175		0.615087	185
145Kt A+B	0.311925	113	0.084439	140		0.3086	112		2.568264	176		0.935508	171

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
10	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.141422	268	0.092054	4	80	1.060332	328	30	1.722304	122	20	0.247485	176
Hover A-B	0.20833	211	0.191414	152		0.468413	239		1.94552	147		0.284686	175
80Kt A-B	0.17198	257	0.092927	270		0.466076	260		0.712456	123		0.086278	230
120Kt A-B	0.284234	280	0.17768	299		0.552079	265		1.037024	135		0.143805	263
145Kt A-B	0.119453	230	0.058056	133		0.411222	244		1.391404	137		0.206292	175
Hover A+B	0.155949	299	0.176863	288		0.156229	299		0.550626	284		0.218743	279
80Kt A+B	0.372482	302	0.272648	300		0.373768	302		1.20532	204		0.428946	255
120Kt A+B	0.167834	291	0.01736	281		0.170091	291		1.997786	181		0.568251	208
145Kt A+B	0.070084	228	0.146776	148		0.070879	230		2.495251	184		0.8742	193

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
11	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.094397	194	0.028446	131	80	0.928254	331	30	1.874974	123	20	0.36207	158
Hover A-B	0.096156	220	0.124352	115		0.383688	249		1.897601	144		0.192219	159
80Kt A-B	0.189777	287	0.139536	303		0.473525	271		0.656232	117		0.087989	295
120Kt A-B	0.15312	287	0.093446	331		0.42181	263		1.144496	131		0.026426	201
145Kt A-B	0.144485	204	0.091786	138		0.411954	235		1.458929	137		0.266749	169
Hover A+B	0.223468	301	0.228018	299		0.223759	301		0.617465	287		0.282001	285
80Kt A+B	0.276624	296	0.230493	319		0.277892	296		1.251084	200		0.392955	241
120Kt A+B	0.199556	236	0.035045	334	,	0.200341	236		2.178004	181		0.729814	202
145Kt A+B	0.30721	183	0.156248	129		0.305386	183		2.758963	183		1.125045	188

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
12	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.088372	303	0.040087	340	80	1.069339	333	30	1.747431	120	20	0.212009	156
Hover A-B	0.138989	236	0.044676	103		0.43392	251		1.857802	145		0.182418	175
80Kt A-B	0.074038	212	0.03868	133		0.346404	252		0.831048	120		0.101003	142
120Kt A-B	0.104176	265	0.065874	358		0.388874	254		1.203984	131		0.08389	157
145Kt A-B	0.189213	257	0.070583	314		0.483466	252		1.299999	139		0.187353	203
Hover A+B	0.023186	98	0.048864	119		0.02305	97		0.378737	279		0.071079	233
80Kt A+B	0.246438	239	0.087278	213		0.246874	240		1.467644	195		0.53305	215
120Kt A+B	0.278277	254	0.064167	2		0.279688	254		2.137508	184		0.742155	211
145Kt A+B	0.322668	237	0.07209	66		0.323924	237		2.639592	189		1.062665	203

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
13	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.457242	183	0.028405	324	80	0.626516	315	30	2.075305	131	19	0.69725	170
Hover A-B	0.147058	1	0.053746	232		0.306239	286		1.762414	138		0.135084	70
80Kt A-B	0.171925	60	0.071035	57		0.14673	285		0.952014	106		0.255815	74
120Kt A-B	0.214342	48	0.103124	77		0.120104	292		1.33749	119		0.300237	75
145Kt A-B	0.13403	329	0.118282	265		0.345596	272		1.278389	130		0.037634	102
Hover A+B	0.160661	92	0.131253	83		0.160571	92		0.244898	284		0.094956	117
80Kt A+B	0.176284	9	0.097421	21		0.17695	9		1.131844	188		0.137755	208
120Kt A+B	0.20973	10	0.131168	43		0.210795	9		1.859153	176		0.335527	192
145Kt A+B	0.10178	292	0.079618	231	, and the second	0.105101	292		2.416867	185		0.765277	198

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
14	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.043871	326	0.077443	179	80	1.03779	335	30	1.797667	119	20	0.246057	147
Hover A-B	0.250402	299	0.131275	278		0.516871	277		1.636209	144		0.089559	282
80Kt A-B	0.076905	324	0.02997	20		0.335205	273		0.772848	112		0.072465	51
120Kt A-B	0.164148	237	0.171274	194		0.448978	245		1.236283	135		0.158519	180
145Kt A-B	0.334668	321	0.185128	315		0.511539	287		1.070727	129		0.165439	322
Hover A+B	0.228697	89	0.172602	102		0.228629	89		0.181253	291		0.153421	103
80Kt A+B	0.444824	35	0.233458	63		0.444938	35		0.928988	175		0.166951	71
120Kt A+B	0.401959	15	0.102478	137		0.402841	14		1.679193	173		0.171379	184
145Kt A+B	0.644317	356	0.075764	255		0.646459	356		1.799874	185		0.244248	229

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
15	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.363445	249	0.044457	32	80	1.083352	316	30	1.630054	130	20	0.411868	206
Hover A-B	0.177773	202	0.128494	41		0.427051	238		1.956539	145		0.276902	167
80Kt A-B	0.256493	215	0.109086	253		0.506661	240		0.831888	133		0.23179	192
120Kt A-B	0.409914	219	0.195748	244		0.672653	232		1.338673	146		0.406464	197
145Kt A-B	0.214618	163	0.18547	83		0.378148	215		1.586923	136		0.375719	153
Hover A+B	0.074173	173	0.152435	165		0.073728	173		0.387663	268		0.133231	212
80Kt A+B	0.304634	276	0.037687	283		0.305708	276		1.349217	201		0.487299	235
120Kt A+B	0.579386	275	0.144156	297		0.581379	275		2.060193	193		0.857859	233
145Kt A+B	0.479439	271	0.137422	89		0.482247	271		2.50061	194		1.010004	218

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
16	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.374782	269	0.090561	58	80	1.195644	318	30	1.526207	127	20	0.328622	221
Hover A-B	0.161809	285	0.158173	63		0.451571	267		1.735992	144		0.067048	203
80Kt A-B	0.222461	240	0.045509	248		0.506889	252		0.732074	129		0.157888	215
120Kt A-B	0.418754	261	0.24027	271		0.702885	257		1.037558	145		0.307763	244
145Kt A-B	0.04873	345	0.212789	42		0.294016	259		1.358156	131		0.126949	130
Hover A+B	0.163275	130	0.086611	142		0.162933	130		0.275524	261		0.151998	163
80Kt A+B	0.155919	152	0.113375	176		0.154722	152		1.429665	184		0.447117	183
120Kt A+B	0.416578	109	0.260885	98		0.414355	109		2.243364	167		0.748348	158
145Kt A+B	0.624346	102	0.279851	86		0.621235	102		2.606872	169		1.039969	153

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
17	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.031618	317	0.050796	59	80	1.024037	334	30	1.805875	120	20	0.258641	148
Hover A-B	0.117707	204	0.079119	36		0.383469	244		1.921829	144		0.227202	159
80Kt A-B	0.073185	186	0.041995	66		0.320983	248		0.864868	119		0.129634	134
120Kt A-B	0.076669	171	0.059912	59		0.311485	236		1.335737	130		0.206848	134
145Kt A-B	0.224682	199	0.117649	225		0.47158	228		1.503437	140		0.343935	174
Hover A+B	0.033688	339	0.069537	300		0.034126	339		0.419734	283		0.091715	265
80Kt A+B	0.232903	94	0.096333	66		0.231857	94		1.307397	178		0.352028	157
120Kt A+B	0.399486	99	0.084833	82		0.397408	99		2.178215	167		0.685962	156
145Kt A+B	0.574942	96	0.089234	116		0.571986	96		2.53441	170		0.961197	154

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
18	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.10891	151	0.050044	16	80	0.887043	336	30	1.933096	122	20	0.398909	148
Hover A-B	0.097986	189	0.056474	54		0.349833	243		1.932445	143		0.231435	150
80Kt A-B	0.058938	188	0.003668	189		0.315864	251		0.857654	119		0.120082	129
120Kt A-B	0.065231	187	0.023473	325		0.322076	240		1.314334	130		0.185505	136
145Kt A-B	0.119797	145	0.060929	39		0.290945	226		1.517209	133		0.28878	142
Hover A+B	0.115527	42	0.144143	29		0.115804	42		0.352808	295		0.046329	357
80Kt A+B	0.144347	147	0.099493	6		0.14311	147		1.415628	184		0.43109	182
120Kt A+B	0.450975	142	0.091338	63		0.448725	142		2.442037	171		0.931503	170
145Kt A+B	0.709512	146	0.080946	148	, and the second	0.706326	146		3.034649	175		1.411913	170

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
19	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.065843	279	0.148752	218	80	1.031178	332	30	1.773744	121	20	0.25029	158
Hover A-B	0.198795	64	0.175332	18		0.119829	283		1.917394	135		0.308531	93
80Kt A-B	0.095744	76	0.077975	67		0.19798	263		0.914788	111		0.194438	89
120Kt A-B	0.226021	87	0.123039	62		0.097675	207		1.459156	122		0.366807	99
145Kt A-B	0.321385	81	0.255459	44		0.068969	143		1.621236	123		0.434272	100
Hover A+B	0.164591	216	0.056255	240		0.164279	216		0.497889	262		0.24661	225
80Kt A+B	0.588989	171	0.199789	198	, and the second	0.58801	171		1.872481	183		0.890396	180
120Kt A+B	0.947801	168	0.314875	210		0.946059	169		3.000183	174		1.491208	177
145Kt A+B	1.537488	163	0.547287	187		1.534801	163		3.918124	175		2.292662	172

Flight #	Vib	Vib	Pred	Pred	Yellow	After	After	Yellow	After	After	Yellow	After	After
20	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab	Mag	Phase
Fpg100 A-B	0.442209	204	0.064965	271	80	0.777295	310	30	1.934348	133	20	0.646767	182
Hover A-B	0.174997	177	0.077556	318		0.372328	230		2.010072	144		0.312077	154
80Kt A-B	0.138393	102	0.10312	24		0.171421	244		0.973705	113		0.24117	101
120Kt A-B	0.135376	119	0.133645	9		0.224545	223		1.413227	127		0.287996	118
145Kt A-B	0.341969	151	0.154564	112		0.417944	195		1.727227	136		0.509111	147
Hover A+B	0.049651	199	0.115483	126		0.04926	199		0.413426	272		0.128947	228
80Kt A+B	0.459304	223	0.103606	169		0.459367	223		1.70118	197		0.765271	212
120Kt A+B	0.678619	229	0.036912	41		0.679114	229		2.533648	189		1.183963	212
145Kt A+B	1.151947	229	0.134108	242		1.152754	229		3.341251	197		1.858797	213

B-9

Appendix C: AH-64A Database

Note: All data in this appendix was manually typed into Microsoft Excel spreadsheets. The data was originally presented with a graphic user interface in the PC-GBS program.

		Flight Log	J		
Flight #	Туре	BUNO	Date	Time	Vib Category
1	AH-64A	86-08964	6/5/2003	153548	good
2	AH-64A	86-08962	11/14/2003	132815	good
3	AH-64A	86-08964	6/5/2003	145701	good
4	AH-64A	86-08963	8/11/2003	94214	good
5	AH-64A	91-00113	1/28/2005	35232	good
6	AH-64A	86-08962	1/29/2004	115335	Above
7	AH-64A	86-08962	10/18/2002	172058	Above
8	AH-64A	86-08962	5/5/2003	121031	Above
9	AH-64A	91-00113	1/15/2005	61607	Above
10	AH-64A	88-00282	8/6/2004	121059	Above
11	AH-64A	91-00113	1/15/2005	31415	Caution
12	AH-64A	86-08962	1/29/2004	105756	Caution
13	AH-64A	86-08963	1/19/2004	74156	Caution
14	AH-64A	86-08964	1/22/2003	162720	Caution
15	AH-64A	91-00113	1/14/2005	92415	Caution
16	AH-64A	86-08962	4/9/2003	160621	Exceed
17	AH-64A	86-08962	4/9/2003	171712	Exceed
18	AH-64A	86-08962	11/7/2003	102919	Exceed
19	AH-64A	86-08962	11/7/2003	145649	Exceed
20	AH-64A	86-08964	1/10/2002	141123	Exceed

	_																				_
	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0.5	0
	9	0	0	5.0-	0	0	0	0	9.0	0	0	1.5	0	0	0	0	0	0	2.5	0	0
4	8	0	0.5	0	-0.5	0	0	0	0	0	0	0	3.5	0	0	1.5	0	0	0	0	0
	P/L	0	-0.5	0	0	0	0	0	0	0	0	1	-0.75	0	0	0	-0.75	-1.75	0	-2.25	-0.5
	W	0	0	0	0	0	0	0	0	0	0	0	0	-113	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0.5	0	0	0	0	0	0	0	0	0	0	0	-0.5	0
	9	0	0	0	0	0	0	0	-0.5	0	0.5	0.5	0	0	0	2	0	0	0	0	0
3	8	0	0	1.5	0	0	0.5	0	0	-5	0	0	0	0	2	0	0	-0.5	0	0	0
	P/L	0	-0.75	0	0	0	0	0	0	0	0	0	0	0	0	-0.5	0	0	0	-1	0
	Wt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0	0	0	0	0	0	0	0.5	1.5	0	0	0	0	0	0	0	0
	9	0	0	0	-0.5	0	0	0	0	-0.5	0	0	0	0	0	9.0	0	0	0	-2	2
2	8	0	0	-1	0	0	-0.5	0	0.5	0	0	0	0	1	0.5	0	-1	-1.5	0	0	0
	P/L	-0.5	0	0	0	-0.75	0.75	0.5	0	0	0	0	0	0	-3.75	0	0	0	0	0	0
	Wt	-113	0	-217	0	0	0	113	165	165	165	0	-217	0	0	113	0	0	0	0	278
	4	0	0	0	0	0	0	0	0	0	9.0	1	0	0	1	0	0	0	0	0	0
	9	0	0	1	0	0	0	1.5	0	-1.5	0	0	0	0	0	0	0	0	2	-1.5	0
1	8	0	0	0	0.5	0	0	0	-0.5	0	0	0	9.0	0	0	2	9.0	0	0	0	0
	P/L	0	0	0	0	0	0	-1	0	0.5	-1.75	9.0	2	0	0	0	-2	-2.75	0	0	9.0
	Wt	-278	0	0	0	-165	0	0	-165	0	-165	0	113	0	0	0	0	0	0	0	226
Flight		-	2	3	4	2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Pred		Pred	#1 Blade	After	After #	After #1 Blade	After	After									
Mag Phase Wt Mag	Wt	_	Ma		Phase	P/L	Mag	Phase	Tab 8	Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
0.058835 298 113 0.183	_	_	0.183	.183871	167	0.5	0.100682	160	0.5	0.116792	166	0.5	0.116792	166	0.5	0.116795	166
0.072847 250 0.138279		0.138	0.138	279	187		0.054198	121		0.077419	191		0.065493	181		0.049691	166
0.087651 129 0.197414	129 0.197	0.197	0.197	414	178		0.181748	172		0.199012	190		0.232637	200		0.223584	508
0.097796 197 0.133198	197	0.133	0.133	198	191		0.14804	207		0.260505	225		0.317749	240		0.437768	246
0.070924 191 0.12	191 0.12	0.12	0.12	0.12969	184		0.152503	209		0.242586	230		0.338182	232		0.447965	244
0.035466 161 0.10		0.10	0.10	0.107573	159		0.134035	195		0.240239	226		0.334865	237		0.474209	247
0.042047 285 0.089		0.085	0.086	0.089394	177		0.173615	217		0.327282	229		0.447661	239		0.707141	232

After	Phase	225	206	229	250	241	235	216
After	Mag	0.06866	0.108252	0.138529	0.370291	0.323671	0.436353	0.644924
After #1 Blade	Tab 4	0.5						
After	Phase	225	207	213	246	225	219	213
After	Mag	0.068665	0.129379	0.13637	0.247733	0.221285	0.319354	0.377315
After #1 Blade	Tab 6	0.5						
After	Phase	225	210	198	227	209	202	193
After	Mag	0.068668	0.145241	0.095927	0.185331	0.134508	0.251108	0.307974
#1 Blade	Tab 8	9.0						
After	Phase	235	189	158	193	154	167	162
After	Mag	0.050399	0.0781	0.080867	0.077338	0.104953	0.199866	0.235243
#1 Blade	P/L	0.5						
After	Phase	286	234	115	163	129	145	134
After	Mag	0.064371	0.124559	0.077553	0.077284	0.143007	0.203259	0.252145
#1 Blade	Wt	-113						
Pred	Phase	258	295	156	297	341	201	207
Pred	Mag	0.057926	0.025258	0.023543	0.095848	0.01744	0.074586	0.114811
Vib	Phase	225	214	147	163	130	145	134
QIA	Mag	0.068736	0.156707	0.074744	0.07762	0.142985	0.203573	0.252516
Batch	2	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	110	75	268	239	263	241	220
After	Mag	0.127281	0.241423	0.150479	0.454589	0.445569	0.510344	0.644227
After #1 Blade	Tab 4	9.0						
After	Phase	110	62	526	732	760	230	220
After	Mag	0.127274	0.224987	0.123691	0.339646	0.320065	0.380032	0.375584
After #1 Blade	Tab 6	0.5						
After	Phase	110	81	265	217	267	218	202
After	Mag	0.12727	0.209477	0.074643	0.293885	0.226202	0.293527	0.290217
#1 Blade	Tab 8	9.0						
After	Phase	101	73	301	198	275	193	170
After	Mag	0.129522	0.280519	0.018137	0.192333	0.114793	0.197348	0.196528
#1 Blade	P/L	0.5						
After	Phase	130	86	257	186	285	170	135
After	Mag	0.172082	0.207929	0.035539	0.182401	0.051082	0.165904	0.204087
#1 Blade	Wt	113						
Pred	Phase	182	62	318	266	338	213	30
Pred	Mag	0.068366	0.09695	0.120537	0.102055	0.059642	0.019174	0.085837
۸ib	Phase	110	81	347	186	284	171	135
Vib	Mag	0.127352	0.195151	0.022116	0.182843	0.051449	0.16641	0.20431
Batch	3	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	246	15	124	<u> </u>	98	16	29
After	Mag	0.120228	0.063927	0.20579	0.481982	0.637003	0.596702	0.926695
After #1 Blade	Tab 4	-0.5						
After	Phase	246	88	202	230	195	528	218
After	Mag	0.120237	0.138836	0.212914	0.18711	0.09754	0.265718	0.158572
After #1 Blade	Tab 6	9.0						
After	Phase	246	36	194	199	130	209	161
After	Mag	0.120241	0.122131	0.175903	0.156345	0.085055	0.185112	0.114644
#1 Blade	Tab 8	0.5						
After	Phase	253	42	174	145	100	159	100
After	Mag	0.106258	0.198456	0.154653	0.117474	0.179934	0.132392	0.183411
After #1 Blade	P/L	0.5						
After	Phase	220	62	181	131	26	128	98
After	Mag	0.150584	0.080099	0.171412	0.143309	0.243909	0.153592	0.290755
#1 Blade	Wt	113						
Pred	Phase	246	44	208	202	33	243	37
Pred	Mag	0.120246	0.118456	0.142603	0.064338	0.040356	0.12044	0.030551
qi X	Phase	246	31	170	132	26	129	87
۸ib	Mag	0.120262	0.110412	0.143915	0.143248	0.243478	0.153558	0.290249
Batch	4	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After #1 Blade After After	Dhaca Tah A Mag Dhaca	יומט +	0.5 0.076847	0.5 0.090687 0.090687	223 0.5 0.076847 15 0.090687 205 0.180917	100 100 100 100 100 100 100 100 100 100	1835 1807 180847 18091	23 0.5 0.076847 15 0.090687 205 0.180917 230 0.443026 228 0.587399 241 0.523171
After	Mag Phase		0.076852 223	\vdash				
After #1 Blade	Phase Tab 6		223 0.5			\Box		
After	Mag		0.076855 2			-	+	
er #1 Blade	se Tab 8		1 0.5					
After After	Mag Phase	1057007				1 1-1-		
After #1 Blade	se P/L	0.5	?	3	2	S		
Arter Arte	Mag Phase	0.128526 198		<u> </u>				
# Blade	Wt	113 0.						
Fred	Phase	304		64	132	132 180	132 132 180 211	
ב	Mag	0.05257		0.054062	0.054062 0.083888	0.054062 0.083888 0.127131	0.054062 0.083888 0.127131 0.189534	0.054062 0.083888 0.127131 0.189534 0.051384
Ω >	Phase	223		349		$\vdash\vdash\vdash$		349 162 180 200 185
2	Mag	0.076928		0.053418	0.053418	0.053418 0.121979 0.18709	0.053418 0.121979 0.18709 0.27539	0.053418 0.121979 0.18709 0.27539 0.105057
Batch	2	FPG100		Hover Lat	Hover Lat 60K Vert	Hover Lat 60K Vert 80 K Vert	Hover Lat 60K Vert 80 K Vert 100 K Vert	Hover Lat 60K Vert 80 K Vert 100 K Vert 120 K Vert

After	Phase	328	138	209	244	240	241	234
After	Mag	0.058161	0.138899	0.230777	0.497114	0.470505	0.572332	0.96529
After #1 Blade	Tab 4	0.5						
After	Phase	328	146	199	239	230	232	239
After	Mag	0.058166	0.144443	0.240164	0.378246	0.365445	0.441164	0.707403
After #1 Blade	Tab 6	0.5						
After	Phase	328	153	190	226	225	222	234
After	Mag	0.058168	0.146386	0.206693	0.321763	0.272053	0.351761	0.584243
After #1 Blade	Tab 8	9.0						
After	Phase	342	123	173	213	202	204	231
After	Mag	0.07238	0.152501	0.18912	0.206009	0.188359	0.243783	0.424809
#1 Blade	P/L	0.5						
After	Phase	688	153	126	203	185	188	225
After	Mag	0.123438	0.088104	0.158992	0.185349	0.167401	0.195789	0.310391
#1 Blade	Wt	-113						
Pred	Phase	316	220	134	115	113	86	266
Pred	Mag	0.085174	0.053947	0.132312	0.040172	0.154589	0.164774	0.017861
۸ib	Phase	328	158	169	203	185	188	225
۸iV	Mag	0.058034	0.145198	0.178742	0.185945	0.167916	0.196544	0.311266
Batch	9	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	282	80	25	266	264	336	227
After	Mag	0.100555	0.207052	0.018376	0.215603	0.240822	0.201417	0.352169
After #1 Blade	Tab 4	9.0						
After	Phase	787	84	101	275	258	72	548
After	Mag	0.100562	0.191951	0.038594	0.093068	0.115149	0.20052	0.091956
After #1 Blade	Tab 6	0.5						
After	Phase	282	87	62	184	306	43	108
After	Mag	0.100566	0.177366	0.085231	0.018563	0.028588	0.271576	0.053521
#1 Blade	Tab 8	0.5						
After	Phase	294	22	22	74	99	54	73
After	Mag	0.099301	0.245333	0.146135	0.121549	0.097028	0.399609	0.202355
After #1 Blade	P/L	0.5						
After	Phase	243	107	83	28	74	99	20
After	Mag	0.095982	0.18448	0.124405	0.160994	0.159608	0.47599	0.321865
#1 Blade	Wt	113						
Pred	Phase	274	06	171	258	221	40	289
Pred	Mag	0.067864	0.064378	0.096368	0.144015	0.188453	0.123231	0.044154
qi>	Phase	282	88	74	78	74	99	20
۸ib	Mag	0.100501	0.163468	0.159363	0.160485	0.159045	0.475223	0.321169
Batch	7	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	257	220	200	245	253	243	211
After	Mag	0.181762	0.088937	0.269402	0.330057	0.293635	0.320978	0.746699
After #1 Blade	Tab 4	0.5						
After #	Phase	257	220	193	237	242	223	205
After	Mag	0.18177	0.110383	0.283687	0.210957	0.175562	0.193662	0.483485
After #1 Blade	Tab 6	0.5						
After	Phase	257	221	184	212	237	189	190
After	Mag	0.181774	0.127333	0.254755	0.164788	0.07791	0.131022	0.426549
#1 Blade	Tab 8	0.5						
After	Phase	263	205	170	160	113	128	168
After	Mag	0.170826	0.052589	0.241691	0.094579	0.050251	0.147252	0.351524
After #1 Blade	P/L	0.5						
After	Phase	237	208	175	140	86	108	148
After	Mag	0.195687	0.17846	0.256369	0.113304	0.112247	0.198909	0.345975
#1 Blade	Wt	113						
Pred	Phase	306	253	160	21	333	20	170
Pred	Mag	0.124307	0.012827	0.217138	0.023403	0.03246	0.073491	0.188134
Vib	Phase	257	224	167	141	66	109	149
۸ib	Mag	0.181767	0.140271	0.231821	0.113337	0.111833	0.198608	0.346395
Batch	8	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Batch	۸ib	qi/	Pred	Pred	#1 Blade	After	After #	After #1 Blade	After	After									
6	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab 8	Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
FPG100	0.188258	234	0.092984	217	113	0.22474	219	0.5	0.171031	238	0.5	0.18821	234	0.5	0.188206	234	0.5	~	234
Hover Lat	0.169459	304	0.113618	357		0.132513	287		0.162086	337		0.161245	308		0.157785	315		0.162152	
60K Vert	0.199788	162	0.152296	133		0.222388	172		0.208802	166		0.219369	182		0.248224	193		0.234358	202
80 K Vert	0.314941	160	0.255443	142		0.314709	160		0.305119	168		0.354066	189		0.354584	204		0.439663	218
100 K Vert	0.42366	9/1	0.101127	180		0.423303	176		0.42799	185		0.474049	199		0.546207	506		0.614516	217
120 K Vert	0.178907	130	0.164599	44		0.178922	130		0.15658	156		0.195793	202		0.268312	223		394085	240
140 K Vert	0.121618	115 (0.179962	12		0.12171	115		0.100504	180		0.228055	219		0.341277	235		3.606805	229

After	Phase	151	99	258	258	241	243	243
After	Mag	0.029599	0.258828	0.336206	0.424208	0.451062	0.637406	0.920487
#1 Blade	Tab 4	0.5						
After	Phase	151	71	280	63	108	118	26
After	Mag	0.029592	0.17728	0.067599	0.211393	0.283257	0.262655	0.155362
#1 Blade	Tab 6	5.0-						
After	Phase	151	20	255	245	224	228	250
After	Mag	0.029594	0.223428	0.261962	0.219491	0.250803	0.406362	0.545129
#1 Blade	Tab 8	9.0						
After	Phase	106	<u> </u>	222	544	202	212	253
After	Mag	0.023176	0.299246	0.200559	0.089836	0.168604	0.285504	0.384814
#1 Blade	P/L	9.0						
After	Phase	163	98	252	227	641	204	257
After	Mag	0.09612	0.209642	0.223984	0.055172	0.152568	0.223947	0.265507
#1 Blade	Wt	113						
Pred	Phase	71	09	284	199	144	175	211
Pred	Mag	0.066929	0.020881	0.093792	0.058781	0.174757	0.11342	0.104149
Vib	Phase	151	20	257	227	179	204	256
۸ib	Mag	0.02973	0.208752	0.187317	0.055764	0.152948	0.224711	0.266139
Batch	10	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	242	316	155	182	170	176	182
After	Mag	0.155656	0.207494	0.413171	0.477673	0.626993	0.37252	0.559348
After #1 Blade	Tab 4	9.0						
After	Phase	242	310	153	191	129	153	157
After	Mag	0.155662	0.205291	0.448054	0.464296	0.659843	0.413339	0.382261
After #1 Blade	Tab 6	9.0						
After	Phase	242	302	146	158	121	140	139
After	Mag	0.155666	0.210001	0.45173	0.517773	0.66166	0.462564	0.442179
#1 Blade	Tab 8	0.5						
After	Phase	237	283	135	137	134	114	104
After	Mag	0.172175	0.26922	0.470557	0.580023	0.788168	0.636888	0.671374
After #1 Blade	P/L	-0.5						
After	Phase	222	289	142	140	138	120	111
After	Mag	0.187112	0.182246	0.475917	0.5544	0.744966	0.58392	0.580734
#1 Blade	Wt	113						
Pred	Phase	236	37	159	208	190	302	251
Pred	Mag	0.121463	0.053623	0.186364	0.147788	0.196002	0.22742	0.215469
qi X	Phase	242	302	137	140	138	120	111
QiA	Mag	0.155697	0.218824	0.472251	0.55443	0.744927	0.583765	0.580582
Batch	11	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	314	190	106	96	84	74	61
After	Mag	0.049902	0.29822	0.452605	0.585714	0.798054	1.225449	1.022364
After #1 Blade	Tab 4	-0.5						
After	Phase	314	176	140	196	109	99	272
After	Mag	0.049899	0.246148	0.269119	0.137325	0.142525	0.42224	0.052093
After #1 Blade	Tab 6	0.5						
After	Phase	314	180	130	161	92	69	78
After	Mag	0.049902	0.256119	0.285814	0.167127	0.224528	0.52819	0.086497
After #1 Blade	Tab 8	0.5						
After	Phase	332	163	121	122	87	20	29
After	Mag	0.060658	0.217448	0.324451	0.201884	0.336209	0.66981	0.245663
After #1 Blade	P/L	0.5						
After	Phase	216	180	125	116	87	20	29
After	Mag	0.039056	0.317608	0.317984	0.236219	0.40131	0.748407	0.365596
#1 Blade	Wt	113						
Pred	Phase	283	134	167	249	32	28	267
Pred	Mag	0.132554	0.073662	0.122269	0.271751	0.093329	0.237599	0.11905
۸ib	Phase	314	183	118	117	87	20	29
Λib	Mag	0.049782	0.261302	0.32757	0.23601	0.400815	0.747712	0.364869
Batch	12	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

ŀ	se	C	2	9	_	_	0	6
After	Pha	250		266	277	307	306	289
After	Mag	0.137792	0.039166	0.242892	0.470037	0.672895	0.808119	0.88368
After #1 Blade	Tab 4	0.5						
After	Phase	250	302	259	283	315	313	306
After	Mag	0.137799	0.034797	0.21608	0.353432	0.578108	0.688875	0.825066
#1 Blade	Tab 6	9.0						
After	Phase	250	280	593	281	322	321	314
After	Mag	0.137803	0.044204	0.167252	0.258399	0.550931	0.624403	0.73064
#1 Blade	Tab 8	9.0						
After	Phase	222	18	268	307	988	334	268
After	Mag	0.125001	0.058708	0.107375	0.169691	0.515872	0.582847	0.698035
#1 Blade	P/L	0.5						
After	Phase	226	219	261	318	343	342	પ્રદેશ
After	Mag	0.162154	0.06955	0.128056	0.140984	0.497008	0.581852	0.689028
#1 Blade	Wt	113						
Pred	Phase	242	346	184	179	322	988	344
Pred	Mag	0.07271	0.04486	0.161231	0.214978	0.155533	0.141403	0.127493
Vib	Phase	250	273	275	317	343	342	336
Vib	Mag	0.137813	0.057329	0.09722	0.140983	0.496776	0.581443	0.688503
Batch	13	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

_	æ							
After	Phase	298	325	192	221	222	202	193
After	Mag	0.20759	0.685152	0.315249	0.315958	0.228997	0.530063	0.780427
#1 Blade	Tab 4	0.5						
After	Phase	298	324	186	202	189	185	181
After	Mag	0.207597	0.678691	0.333832	0.230616	0.171053	0.491599	0.553383
#1 Blade	Tab 6	0.5						
After	Phase	298	322	178	178	154	172	167
After	Mag	0.207601	0.678746	0.3094	0.24122	0.143394	0.48093	0.552221
#1 Blade	Tab 8	9.0						
After	Phase	292	313	162	132	108	137	127
After	Mag	0.206539	0.69608	0.282554	0.27732	0.319709	0.517903	0.608198
#1 Blade	P/L	-0.5						
After	Phase	280	319	171	139	113	146	137
After	Mag	0.173548	0.631851	0.314171	0.250201	0.260118	0.494724	0.559571
#1 Blade	Wt	113						
Pred	Phase	310	317	177	99	46	74	91
Pred	Mag	0.064603	0.059474	0.211339	0.139924	0.264753	0.070155	0.074699
Vib	Phase	298	321	164	139	113	146	137
۸ib	Mag	0.207505	0.683454	0.291504	0.250215	0.259832	0.494931	0.559829
Batch	14	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	231	0	218	228	228	235	232
After	Mag	0.123682	0.146341	0.276322	0.557936	0.836961	0.555876	0.821925
After #1 Blade	Tab 4	9.0						
After	Phase	231	354	210	220	122	223	237
After	Mag	0.123688	0.129646	0.279266	0.45491	0.746397	0.435871	0.558847
After #1 Blade	Tab 6	9.0						
After	Phase	231	347	203	208	218	211	229
After	Mag	0.123691	0.121462	0.238287	0.426186	0.657579	0.35808	0.438631
After #1 Blade	Tab 8	0.5						
After	Phase	236	12	189	193	210	190	222
After	Mag	0.105958	0.170657	0.205867	0.335157	0.575611	0.271962	0.282057
After #1 Blade	P/L	0.5						
After	Phase	210	334	193	187	204	174	206
After	Mag	0.166498	0.062788	0.22683	0.326463	0.542189	0.240405	0.178552
#1 Blade	Wt	113						
Pred	Phase	209	14	112	149	174	63	14
Pred	Mag	0.057057	0.120951	0.126067	0.220933	0.069744	0.240769	0.237107
qi>	Phase	231	340	187	187	204	174	206
۸ib	Mag	0.123747	0.12058	0.192154	0.326912	0.54274	0.240951	0.179458
Batch	15	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	357	69	204	242	246	202	236
After	Mag	0.31198	0.744296	0.3088	0.452963	0.701583	0.776441	2.271375
After #1 Blade	Tab 4	0.5						
After	Phase	357	02	197	236	241	193	238
After	Mag	0.311981	0.726191	0.320248	0.335353	0.587511	0.723634	2.014101
After #1 Blade	Tab 6	0.5						
After	Phase	357	20	190	221	240	185	236
After	Mag	0.31198	0.709591	0.28735	0.28365	0.489671	0.692817	1.890659
After #1 Blade	Tab 8	0.5						
After	Phase	358	89	178	203	235	173	236
After	Mag	0.330824	0.784188	0.266742	0.175748	0.383336	0.657062	1.730033
After #1 Blade	P/L	0.5						
After	Phase	328	22	182	190	229	166	235
After	Mag	0.245719	0.690681	0.284171	0.162509	0.329789	0.641974	1.612099
#1 Blade	Wt	113						
Pred	Phase	318	218	142	89	96	105	241
Pred	Mag	0.180622	0.246018	0.076453	0.16985	0.227316	0.679946	0.62767
Vib	Phase	357	20	176	190	229	166	235
۸iV	Mag	0.311844	0.695	0.255071	0.162979	0.3304	0.642435	1.612921
Batch	16	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

ide After After	4 Mag Phase	0.157185 11	0.466151 98	0.312227 160		0.481975 237	188 188
After #1 Blade	Phase Tab 4	11 0.5	100	157	228	227	176
After	Mag	0.157184	0.456112	0.345399	0.260898	0.380587	0 728896
After #1 Blade	Tab 6	0.5					
After	Phase	11	102	148	202	122	167
After	Mag	0.157183	0.444502	0.346466	0.226234	0.289173	0.731419
#1 Blade	Tab 8	0.5					
After	Phase	12	62	139	174	202	156
After	Mag	0.177518	0.498495	0.368098	0.151606	0.210462	0.738267
After #1 Blade	P/L	0.5					
After	Phase	56	109	143	129	184	150
After	Mag	0.098459	0.460417	0.369697	0.159485	0.19201	0.745815
#1 Blade	Wt	113					
Pred	Phase	315	221	108	329	62	114
Pred	Mag	0.10917	0.208548	0.22409	0.110409	0.141118	0.547388
۸ib	Phase	11	103	137	159	184	150
qiN	Mag	0.157059	0.432138	0.366045	0.159705	0.192427	0.746078
Batch	17	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert

ŀ	se		C1	C1	~	_	6	6
After	Phase	42	292	132	143	141	139	149
After	Mag	0.239805	0.2798	1.247222	1.034667	1.929183	1.982885	2.108201
After #1 Blade	Tab 4	9.0						
After	Phase	42	287	131	137	138	135	141
After	Mag	0.2398	0.286212	1.285603	1.095036	2.010602	2.087569	2.038818
After #1 Blade	Tab 6	9.0						
After	Phase	42	285	129	135	136	133	138
After	Mag	0.239797	0.296643	1.305818	1.17803	2.042775	2.156429	2.114862
After #1 Blade	Tab 8	0.5						
After	Phase	40	299	127	129	133	130	134
After	Mag	0.259357	0.256906	1.341781	1.231964	2.106725	2.233769	2.158372
After #1 Blade	P/L	9.0						
After	Phase	29	273	128	128	132	128	131
After	Mag	0.206238	0.287895	1.337391	1.262495	2.152318	2.272541	2.205578
#1 Blade	Wt	113						
Pred	Phase	42	566	140	340	150	141	264
Pred	Mag	0.239662	0.112868	0.557385	0.401148	0.414499	0.157378	0.611424
Vib	Phase	42	283	127	128	132	128	131
۸ib	Mag	0.239721	0.308792	1.342822	1.262397	2.152217	2.272505	2.205741
Batch	18	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	125	181	174	143	141	160	137
After	Mag	0.164219	0.46122	0.384808	0.432868	0.425181	0.798171	0.294741
After #1 Blade	Tab 4	-0.5						
After	Phase	125	171	202	221	220	210	227
After	Mag	0.16422	0.417871	0.510449	0.558809	0.606057	1.054709	1.027591
After #1 Blade	Tab 6	9.0						
After	Phase	125	174	201	211	212	202	222
After	Mag	0.164217	0.426441	0.471508	0.526792	0.519401	0.992231	0.920613
After #1 Blade	Tab 8	0.5						
After	Phase	118	164	195	201	205	198	217
After	Mag	0.160776	0.391272	0.437574	0.428354	0.443265	0.906617	0.770888
After #1 Blade	P/L	0.5						
After	Phase	137	174	197	196	161	194	213
After	Mag	0.217753	0.487524	0.459482	0.414047	0.416153	0.858961	0.667592
#1 Blade	Wt	113						
Pred	Phase	111	203	252	24	325	208	276
Pred	Mag	990620.0	0.115959	0.098588	0.143595	0.219134	0.20682	0.146644
Qi/	Phase	125	175	194	196	197	194	213
qi>	Mag	0.164325	0.430017	0.423048	0.414549	0.416661	0.859669	0.668493
Batch	19	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	292	212	337	332	327	330	313
After	Mag	0.144087	0.091483	0.72144	1.015132	0.988817	1.491641	1.480971
After #1 Blade	Tab 4	0.5						
After	Phase	292	213	338	342	334	332	324
After	Mag	0.144094	0.112888	0.687902	0.991996	0.926903	1.421293	1.520578
After #1 Blade	Tab 6	0.5						
After	Phase	292	215	342	346	340	340	328
After	Mag	0.144098	0.129321	0.693702	0.941132	0.92815	1.391672	1.457185
After #1 Blade	Tab 8	0.5						
After	Phase	301	193	347	354	347	345	335
After	Mag	0.145789	0.058847	0.694142	0.971437	0.917788	1.386565	1.45629
After #1 Blade	P/L	0.5						
After	Phase	265	204	346	326	351	349	339
After	Mag	0.12063	0.183162	0.681708	0.969558	0.908741	1.397896	1.458802
#1 Blade	Wt	113						
Pred	Phase	115	92	18	342	170	341	218
Pred	Mag	0.041371	0.040576	0.148341	0.067199	0.087184	0.180572	0.160983
Vib	Phase	292	219	348	326	351	349	339
۸iV	Mag	0.144012	0.141529	0.70392	0.96919	0.908439	1.39741	1.45824
Batch	20	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	166	22	252	260	258	259	237
After	Mag	0.116913	0.451984	1.496725	3.821504	4.041442	4.832154	6.676825
After #1 Blade	Tab 4	2						
After	Phase	166	74	239	261	253	254	249
After	Mag	0.116908	0.260573	1.315563	2.569398	2.80207	3.303877	4.182457
After #1 Blade	Tab 6	2						
After	Phase	166	106	236	248	258	250	242
After	Mag	0.116923	0.117796	0.816862	1.779134	1.858129	2.25438	2.914765
#1 Blade	Tab 8	2						
After #	Phase	34	28	194	252	257	240	241
After	Mag	0.344675	1.856367	0.475601	0.786202	1.240264	1.536802	2.377982
After #1 Blade	P/L	12						
After	Phase	169	121	208	192	184	160	177
After	Mag	0.71337	0.590163	0.489369	0.13367	0.130135	0.107972	0.090179
#1 Blade	Wt	1017						
Pred	Phase	298	250	129	197	191	161	285
Pred	Mag	0.058835	0.072847	0.087651	0.097796	0.070924	0.035466	0.042047
٩i	Phase	166	200	168	192	184	160	177
Vib	Mag	0.116931	0.085828	0.171535	0.133674	0.130108	0.107955	0.090145
Batch	1	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

	4)		_			_	_	
After	Phase	225	28	256	261	258	258	236
After	Mag	0.068641	0.376208	1.464157	3.762075	3.916322	4.768844	6.579211
After #1 Blade	Tab 4	9						
After	Phase	225	83	243	262	254	253	247
After	Mag	0.068641	0.193111	1.260388	2.511393	2.676177	3.247396	4.052395
After #1 Blade	Tab 6	2						
After	Phase	225	146	243	249	259	248	239
After	Mag	0.06877	0.09821	0.75969	1.711935	1.732849	2.204178	2.802599
#1 Blade	Tab 8	2						
After	Phase	18	89	198	526	222	236	237
After	Mag	0.369998	1.780778	0.373734	0.722592	1.114642	1.505177	2.271931
#1 Blade	P/L	12						
After	Phase	174	177	214	163	130	145	134
After	Mag	0.637501	0.633707	0.397342	0.077646	0.14307	0.20361	0.252607
#1 Blade	Wt	1017						
Pred	Phase	258	295	156	297	341	201	207
Pred	Mag	0.057926	0.025258	0.023543	0.095848	0.01744	0.074586	0.114811
Vib	Phase	225	214	147	163	130	145	134
Vib	Mag	982890.0	0.156707	0.074744	0.07762	0.142985	0.203573	0.252516
Batch	2	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	110	69	260	259	260	258	236
After	Mag	0.127425	0.698256	1.489629	3.823673	4.053417	4.854124	6.590927
After #1 Blade	Tab 4	2						
After	Phase	110	69	247	260	256	253	247
After	Mag	0.12742	0.506131	1.26434	2.570546	2.803361	3.330772	4.07375
After #1 Blade	Tab 6	2						
After	Phase	110	22	250	247	263	249	240
After	Mag	0.12731	0.344023	0.76638	1.791738	1.873559	2.285292	2.818814
After #1 Blade	Tab 8	2						
After	Phase	38	28	211	249	264	238	238
After	Mag	0.455518	2.102551	0.314726	0.795979	1.255063	1.57769	2.286325
After #1 Blade	P/L	12						
After	Phase	160	147	228	186	284	171	135
After	Mag	0.671905	0.565733	0.363147	0.182844	0.05136	0.166411	0.2044
#1 Blade	Wt	1017						
Pred	Phase	182	6/	318	502	338	213	30
Pred	Mag	0.068366	0.09695	0.120537	0.102055	0.059642	0.019174	0.085837
Vib	Phase	110	81	347	186	284	171	135
Vib	Mag	0.127352	0.195151	0.022116	0.182843	0.051449	0.16641	0.20431
Batch	3	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

	Φ			1				
After	Phase	246	48	253	260	528	259	237
After	Mag	0.12016	0.629032	1.503214	3.690161	3.784738	4.579831	6.391989
After #1 Blade	Tab 4	2						
After	Phase	246	24	240	262	254	254	249
After	Mag	0.120162	0.41875	1.314798	2.436049	2.538946	3.229531	3.885601
After #1 Blade	Tab 6	2						
After	Phase	246	24	238	248	260	250	242
After	Mag	0.120305	0.245869	0.813757	1.644455	1.596196	2.179239	2.617923
After #1 Blade	Tab 8	2						
After	Phase	6	22	197	252	528	238	239
After	Mag	0.355318	2.028791	0.454264	0.648876	0.975788	1.466056	2.081695
After #1 Blade	Ρ⁄L	12						
After	Phase	180	157	211	132	26	129	87
After	Mag	0.636977	0.444821	0.472844	0.143299	0.243565	0.153615	0.290344
#1 Blade	W	1017						
Pred	Phase	246	44	208	202	33	243	37
Pred	Mag	0.120246	0.118456	0.142603	0.064338	0.040356	0.12044	0.030551
Vib	Phase	246	31	170	132	26	129	87
Vib	Mag	0.120262	0.110412	0.143915	0.143248	0.243478	0.153558	0.290249
Batch	4	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert
_	_		_	_	_	_		_

After	Phase	223	46	254	259	257	259	237
After	Mag	0.076833	0.555073	1.493431	3.835695	4.184375	4.921206	6.719731
After #1 Blade	Tab 4	2						
After	Phase	223	25	241	260	727	254	249
After	Mag	0.076833	0.341972	1.299291	2.572251	2.943133	3.378897	4.199339
After #1 Blade	Tab 6	2						
After	Phase	223	23	538	246	255	251	242
After	Mag	0.076961	0.16771	0.794981	1.789285	1.98375	2.319458	2.92209
After #1 Blade	Tab 8	2						
After	Phase	18	22	196	248	252	240	240
After	Mag	0.365107	1.964095	0.428458	0.785047	1.364347	1.592405	2.381063
After #1 Blade	P/L	12		,				
After	Phase	175	167	211	180	200	185	163
After	Mag	0.649588	0.46741	0.447155	0.187099	0.275394	0.105037	0.102155
#1 Blade	Wt	1017						
Pred	Phase	304	64	132	180	211	275	327
Pred	Mag	0.05257	0.054062	0.083888	0.127131	0.189534	0.051384	0.077709
Vib	Phase	223	349	162	180	200	185	163
Vib	Mag	0.076928	0.053418	0.121979	0.18709	0.27539	0.105057	0.102098
Batch	5	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Phase	328	29	727	260	258	258	237
Mag	0.05802	0.498936	1.499671	3.874937	4.056128	4.913641	6.943069
Tab 4	2						
Phase	328	87	238	260	253	253	248
Mag	0.058025	0.332585	1.320115	2.622165	2.819199	3.391516	4.443387
Tab 6	2						
Phase	328	114	236	248	257	249	242
Mag	0.058055	0.21359	0.821841	1.837547	1.872162	2.346771	3.176988
Tab 8	2						
Phase	17	09	194	122	222	238	147
Mag	0.46924	1.898592	0.483151	0.843193	1.255086	1.639719	2.63983
P/L	12						
щ	171	165	208	203	185	188	222
Mag	0.543826	0.659995	0.496528	0.185928	0.167942	0.196521	0.311219
Wt	1017						
Phase	316	220	134	115	113	86	566
Mag	0.085174	0.053947	0.132312	0.040172	0.154589	0.164774	0.017861
Phase	328	158	169	203	185	188	225
Mag	0.058034	0.145198	0.178742	0.185945	0.167916	0.196544	0.311266
9	FPG100	Hover Lat	119V X00	80 K Vert	100 K Vert	120 K Vert	140 K Vert
	Phase Mag Phase Wt Mag Phase P/L Mag Phase Tab 8 Mag Phase Tab 8 Mag Phase Tab 6 Mag Phase Tab 4 M	Mag Phase Mag Phase PVL Mag Phase Tab 8 Mag Phase Tab 9 Tab 9 Mag Phase Tab 9 Mag Phase Tab 9 Mag Phase Tab 9 Tab 9 Mag Phase Tab 9 <	Mag Phase Mag Phase PVL Mag Phase Tab 8 Mag Phase Tab 9 Tab 9 Mag Phase Tab 9 Tab 9 Mag Phase Tab 9 Tab 9 Tab 9 Mag Phase Tab 9 Tab 9	Mag Phase Mag Phase Tab Phase Phase Tab Phase Phase Tab Phase Phase	Mag Phase Mag Phase P/L Mag Phase Table Phase Phase </td <td>Mag Phase Mag Phase P/L Mag Phase Table Phase Phase Phase Phase Phase Phase Table Phase Phase<!--</td--><td>Mag Phase Wt Mag Phase Tab 8 Mag Phase Tab 9 Tab 9</td></td>	Mag Phase Mag Phase P/L Mag Phase Table Phase Phase Phase Phase Phase Phase Table Phase Phase </td <td>Mag Phase Wt Mag Phase Tab 8 Mag Phase Tab 9 Tab 9</td>	Mag Phase Wt Mag Phase Tab 8 Mag Phase Tab 9 Tab 9

After	Phase	282	09	260	797	260	797	237
After	Mag	0.100419	0.660264	1.332035	3.616577	3.852746	4.424664	6.329074
After #1 Blade	Tab 4	2						
After	Phase	282	02	242	264	256	259	250
After	Mag	0.100423	0.46978	1.112433	2.367776	2.60203	2.875036	3.840002
After #1 Blade	Tab 6	2						
After	Phase	282	80	247	252	263	258	243
After	Mag	0.100545	0.31012	0.61214	1.550812	1.670382	1.811342	2.563408
After #1 Blade	Tab 8	2						
After	Phase	6	28	180	263	264	247	241
After	Mag	0.426542	2.066057	0.248759	0.570793	1.051279	1.053928	2.024632
After #1 Blade	P/L	12						
After	Phase	178	151	207	78	74	26	20
After	Mag	0.564717	0.573132	0.247616	0.160544	0.159116	0.475298	0.32125
#1 Blade	Wt	1017						
Pred	Phase	274	06	171	258	221	40	289
Pred	Mag	0.067864	0.064378	0.096368	0.144015	0.188453	0.123231	0.044154
Vib	Phase	282	88	74	78	74	99	20
Vib	Mag	0.100501	0.163468	0.159363	0.160485	0.159045	0.475223	0.321169
Batch	7	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Batch	Vib	Vib	Pred	Pred	#1 Blade	After	After	After #1 Blade	After	After									
8	Mag	Phase	Mag	Phase	₩	Mag	Phase	Ρ⁄L	Mag	Phase	Tab 8		Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
FPG100	0.181767	257	0.124307	306	1017	0.630141	186	12	0.359302	358	2	0.181812	257	2	0.18167	257	2	0.181667	257
Hover Lat	0.140271	224	0.012827	253		0.603691	178		1.787935	22		0.068145	139		0.18884	73	_	0.384182	53
60K Vert	0.231821	167	0.217138	160		0.5342	203		0.52823	191		0.836657	232		1.331732	236		1.498411	250
80 K Vert	0.113337	141	0.023403	21		0.113382	141		0.679028	253		1.670947	248		2.464538	262		3.71558	260
100 K Vert	0.111833	66	0.03246	333		0.11192	66		1.099109	261		1.71762	261		2.653163	255		3.898038	259
120 K Vert	0.198608	109	0.073491	20		0.198682	109		1.38758	238		2.098823	250		3.14729	254	,	4.675208	259
140 K Vert	0.346395	149	0.188134	170		0.346471	149		2.342231	234		2.867989	237		4.103662	245	_	6.650371	235

After	Phase	234	32	251	257	254	258	237
After	Mag	0.188158	0.50561	1.492412	3.754189	4.114307	4.775866	6.625158
After #1 Blade	Tab 4	2						
After	Phase	234	59	237	257	248	253	249
After	Mag	0.188159	0.288027	1.316933	2.490916	2.891322	3.238267	4.106228
After #1 Blade	Tab 6	2						
After	Phase	234	-	234	242	548	249	242
After	Mag	0.188297	0.144642	0.815849	1.742701	1.92248	2.183362	2.828334
After #1 Blade	Tab 8	2						
After	Phase	3	51	191	237	244	237	240
After	Mag	0.293456	1.885267	0.494882	0.742689	1.316413	1.470797	2.287389
After #1 Blade	P/L	12						
After	Phase	331	337	22	160	176	130	115
After	Mag	0.550165	0.654834	0.337019	0.314943	0.423669	0.178925	0.121667
#1 Blade	Wt	-1017						
Pred	Phase	217	357	133	142	180	44	12
Pred	Mag	0.092984	0.113618	0.152296	0.255443	0.101127	0.164599	0.179962
Vib	Phase	234	304	162	160	176	130	115
۸ib	Mag	0.188258	0.169459	0.199788	0.314941	0.42366	0.178907	0.121618
Batch	6	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	151	26	259	261	258	258	239
Af	Ę	_						
After	Mag	0.02974	0.727151	1.686846	3.845902	4.063365	5.011434	6.934935
After #1 Blade	Tab 4	2						
After	Phase	151	64	247	263	253	253	250
After	Mag	0.029734	0.527995	1.461695	2.587656	2.817194	3.478489	4.450511
#1 Blade	Tab 6	2						
After	Phase	151	02	250	251	222	249	242
After	Mag	0.02971	0.359976	0.960376	1.771714	1.864559	2.425865	3.160133
#1 Blade	Tab 8	2						
After	Phase	56	29	222	259	526	538	244
After	Mag	0.41729	2.140504	0.476873	0.781828	1.242964	1.710399	2.615599
After #1 Blade	Ρ⁄L	12						
After	Phase	168	144	236	227	179	204	256
After	Mag	0.628754	0.534902	0.544493	0.055725	0.152982	0.224666	0.266052
#1 Blade	Wt	1017						
Pred	Phase	71	09	284	199	144	175	211
Pred	Mag	0.066929	0.020881	0.093792	0.058781	0.174757	0.11342	0.104149
Vib	Phase	151	20	257	227	179	204	256
Vib	Mag	0.02973	0.208752	0.187317	0.055764	0.152948		0.266139
Batch	10	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert 0.224711	140 K Vert 0.266139 256 0.104149

After	Phase	242	250	95	88	88	84	62
After	Mag	0.155784	0.634362	1.796736	4.128343	4.4906	5.358638	7.062186
After #1 Blade	Tab 4	-2						
After	ш	242	19	224	252	241	248	244
After	Mag	0.155597	0.287575	1.214193	2.28559	2.515065	2.947209	3.772827
After #1 Blade	Tab 6	2						
After	Phase	242	346	212	233	239	240	234
After	Mag	0.155739	0.170182	0.752348	1.602311	1.547226	1.923328	2.543051
After #1 Blade	Tab 8	2						
After	Phase	2	20	166	215	225	222	230
After	Mag	0.330303	1.862913	0.663001	0.652036	0.99787	1.301713	2.022041
After #1 Blade	P/L	12						
After	Phase	182	190	175	140	138	120	111
After	Mag	0.664868	0.397526	0.616731	0.554476	0.745008	0.583831	0.580684
#1 Blade	Wt	1017						
Pred	Phase	236	37	159	208	190	302	251
Pred	Mag	0.121463	0.053623	0.186364	0.147788	0.196002	0.22742	0.215469
Vib	Phase	242	302	137	140	138	120	111
Nib	Mag	0.155697	0.218824	0.472251	0.55443	0.744927	0.583765	0.580582
Batch	11	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	314	80	249	260	259	262	237
After	Mag	0.049743	0.400633	1.252698	3.583693	3.610127	4.116228	6.276681
After #1 Blade	Tab 4	2						
After	Phase	314	112	232	261	254	258	250
-	Mag	0.049749	0.287576	1.09867	2.331051	2.36663	2.571789	3.793243
After #1 Blade	Tab 6	2						
After	Phase	314	148	224	246	261	255	244
After	Mag	0.049813	0.249049	0.61298	1.550468	1.427405	1.512189	2.51566
After #1 Blade	Tab 8	9						
After	Phase	17	63	163	247	260	238	242
•	Mag	0.452411	1.782661	0.466535	0.554077	0.808371	0.782247	1.97686
After #1 Blade	Ρ⁄L	12						
After	Phase	172	172	177	117	28	20	29
After	Mag	0.556746	0.771312	0.419771	0.236069	0.400896	0.747794	0.364946
#1 Blade	Wt	1017						
Pred	Phase	283	134	167	249	32	78	267
Pred	Mag	0.132554	0.073662	0.122269	0.271751	0.093329	0.237599	0.11905
Vib	Phase	314	183	118	117	87	20	29
Vib	Mag	0.049782	0.261302	0.32757	0.23601	0.400815	0.747712	0.364869
Batch	12	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	250	46	260	264	267	267	244
After	Mag	0.137712	0.482186	1.58301	3.856018	4.095887	4.966219	6.569587
After #1 Blade	Tab 4	2						
After	Phase	250	99	248	997	997	566	528
After	Mag	0.137714	0.271805	1.354666	2.612197	2.826306	3.406279	4.255909
After #1 Blade	Tab 6	2						
After	Phase	250	69	251	256	277	267	258
After	Mag	0.137857	0.099419	0.857496	1.772937	1.964511	2.344493	2.933731
After #1 Blade	Tab 8	2						
After	Phase	9	22	222	270	283	265	259
After	Mag	0.354906	1.880372	0.379489	0.817955	1.377977	1.550214	2.39525
After #1 Blade	P/L	12						
After	Phase	336	341	32	317	343	342	336
After	Mag	0.591773	0.534632	0.320874	0.140961	0.496753	0.581464	0.688483
#1 Blade	Wt	-1017						
Pred	Phase	242	346	184	179	322	336	344
Pred	Mag	0.07271	0.04486	0.161231	0.214978	0.155533	0.141403	0.127493
۸ib	Phase	250	273	275	317	343	342	336
۸ib	Mag	0.137813	0.057329	0.09722	0.140983	0.496776	0.581443	0.688503
Batch	13	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

	(I)	_	_			_		_
After	Phase	298		248		258	254	233
After	Mag	0.207442	0.859956	1.494097	3.643475	3.790211	4.670109	6.552264
After #1 Blade	Tab 4	2						
After	Phase	298	347	234	259	252	248	243
After	Mag	0.207447	0.701351	1.342255	2.390288	2.55476	3.178154	3.973231
After #1 Blade	Tab 6	2						
After	Phase	298	333	228	244	257	240	233
After	Mag	0.207544	0.647189	0.852091	1.626916	1.60832	2.164499	2.769734
After #1 Blade	Tab 8	2						
After	Phase	358	98	188	242	255	225	528
After	Mag	0.496379	1.984219	0.578328	0.63109	0.991798	1.535719	2.257887
After #1 Blade	Ρ⁄L	12						
After	Phase	188	275	199	139	113	146	137
After	Mag	0.494967	0.316308	0.576302	0.250262	0.259921	0.494966	0.559917
#1 Blade	Wt	1017						
Pred	Phase	310	317	177	99	94	74	91
Pred	Mag	0.064603	0.059474	0.211339	0.139924	0.264753	0.070155	137 0.074699
Αib	Phase	298	321	164	139	113	146	137
Vib	Mag	0.207505	0.683454	0.291504	0.250215	0.259832	0.494931	0.559829
Batch	14	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert 0.559829
_	_			_	_		_	_

After	Phase	231	40	252	222	254	222	237
After	Mag	0.123648	0.578974	1.572257	3.903277	4.373304	4.91589	6.856359
After #1 Blade	Tab 4	2						
After	Phase	231	42	239	257	248	252	248
After	Mag	0.123649	0.361088	1.388495	2.638854	3.149264	3.384948	4.323606
After #1 Blade	Tab 6	2						
After	Phase	231	35	237	243	250	247	242
After	Mag	0.123784	0.192415	0.885042	1.8839	2.181455	2.335333	3.047442
After #1 Blade	Tab 8	2						
After	Phase	12	23	200	241	246	536	240
After	Mag	0.332452	1.975651	0.51804	0.880188	1.572956	1.63408	2.506387
After #1 Blade	Ρ⁄Γ	12						
After	Phase	178	169	212	187	204	174	206
After	Mag	0.669136	0.401281	0.541959	0.326913	0.542736	0.240947	0.179443
#1 Blade	Wt	1017						
Pred	Phase	508	14	112	149	174	63	14
Pred	Mag	0.057057	0.120951	0.126067	0.220933	0.069744	0.240769	0.237107
Vib	Phase	231	340	187	187	204	174	206
Vib	Mag	0.123747	0.12058	0.192154	0.326912	0.54274	0.240951	0.179458
Batch	15	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	357	62	_	260	258	252	237
	Mag	0.311881	1.201418	1.540114	3.82874	4.291877	4.850572	8.24691
After #1 Blade	Tab 4	9						
After	Phase	228	29	236	261	253	242	246
After	Mag	0.311885	1.01099	1.375856	2.576306	3.055078	3.378499	5.729424
After #1 Blade	Tab 6	2						
After	Phase	357	20	232	248	257	237	241
After	Mag	0.311844	0.845349	0.881057	1.792347	2.109756	2.382105	4.479083
After #1 Blade	Tab 8	2						
After	Phase	12	09	194	250	256	223	239
After	Mag	0.726018	2.604943	0.563606	0.797915	1.492981	1.776704	3.944329
After #1 Blade	PL	12						
After	Phase	160	109	205	190	229	166	235
After	Mag	0.290842	0.815969	0.574333	0.162976	0.330359	0.642443	1.61286
#1 Blade	Wt	1017						
Pred	Phase	318	218	142	68	96	105	241
Pred	Mag	0.180622	0.246018	0.076453	0.16985	0.227316	0.679946	0.62767
qi/	Phase	357	20	176	190	229	166	235
Vib	Mag	0.311844	0.695	0.255071	0.162979	0.3304	0.642435	1.612921
Batch	16	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	11	74	242	260	257	251	238
After	Mag	0.157117	0.859898	1.32922	3.741624	4.058306	4.651221	7.669677
After #1 Blade	Tab 4	2						
After	Phase	11	98	529	260	252	243	247
After	Mag	0.15712	0.702542	1.197664	2.489405	2.82405	3.192674	5.164913
After #1 Blade	Tab 6	2						
After	Phase	11	<u> </u>	220	247	526	234	242
After	Mag	0.157047	0.565447	0.721072	1.708776	1.875682	2.214718	3.905998
After #1 Blade	Tab 8	2						
After	Phase	20	64	170	249	254	217	240
	Mag	0.586898	2.242161	0.566934	0.713587	1.259784	1.653973	3.369772
#1 Blade	P/L	12						
After	Phase	354	28	06	126	184	150	235
After	Mag	0.744235	0.509532	0.516297	0.159708	0.192428	0.746071	1.035848
#1 Blade	Wt	-1017						
Pred	Phase	315	221	108	328	62	114	260
Pred	Mag	0.10917	0.208548	0.22409	0.110409	0.141118	0.547388	0.666506
۸ib	Phase	11	103	137	159	184	150	235
۸ib	Mag	0.157059	0.432138	0.366045	0.159705	0.192427	0.746078	1.035895
Batch	17	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

	(I)							
After	Phase	42	15	199	245	228	233	219
After	Mag	0.239814	0.413629	1.150848	3.034757	3.165442	3.747995	908856.9
After #1 Blade	Tab 4	2						
After	Phase	42	354	183	236	207	213	218
After	Mag	0.239814	0.225785	1.318412	1.836622	2.356669	2.634756	3.646851
#1 Blade	Tab 6	9						
After	Phase	42	307	161	206	187	190	199
After	Mag	0.239689	0.198256	1.146603	1.443848	1.695274	2.100131	2.864925
#1 Blade	Tab 8	2						
After	Phase	29	48	140	163	166	169	189
After	Mag	0.663856	1.730708	1.430539	0.922089	1.638028	2.125804	2.562974
After #1 Blade	Ρ⁄L	12						
After	Phase	146	203	143	128	132	128	131
After	Mag	0.490548	0.470407	1.340143	1.26245	2.152301	2.272562	2.205834 131
#1 Blade	W	1017						
Pred	Phase	42	592	140	340	150	141	264
Pred	Mag	0.239662	0.112868	0.557385	0.401148	0.414499	0.157378	0.611424
۸ib	Phase	42	283	127	128	132	128	131
۸ib	Mag	0.239721	0.308792	1.342822	1.262397	2.152217	2.272505	2.205741
Batch	18	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert 2.205741 131 0.611424
	<u> </u>			L	_	L		

After	Phase	125	103	246	256	255	251	236
After	Mag	0.164377	0.45179	1.712854	3.959875	4.214903	5.25992	7.250772
After #1 Blade	Tab 4	2						
After	Phase	125	131	234	256	249	244	242
After	Mag	0.164372	0.416282	1.566039	2.707347	2.996231	3.794526	4.708879
After #1 Blade	Tab 6	9						
After	Phase	125	155	230	242	251	238	238
After	Mag	0.164289	0.418835	1.074593	1.970159	2.039001	2.798768	3.469499
After #1 Blade	Tab 8	2						
After	Phase	45	89	200	239	247	226	236
After	Mag	0.42829	1.75484	0.748911	0.977026	1.432307	2.178943	2.939964
After #1 Blade	P/L	12						
After	Phase	160	171	209	196	197	194	213
After	Mag	0.724795	0.943842	0.768904	0.41454	0.416668	0.859638	0.668466
#1 Blade	W	1017						
Pred	Phase	111	203	252	24	325	208	276
Pred	Mag	0.079066	0.115959	0.098588	0.143595	0.219134	0.20682	0.146644
Vib	Phase	125	175	194	196	197	194	213
Vib	Mag	0.164325	0.430017	0.423048	0.414549	0.416661	0.859669	0.668493
Batch	19	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	292	22	284	277	273	276	251
	Mag	0.143942	0.385914	1.652236	3.8202	4.095589	5.077285	6.503921
After #1 Blade	Tab 4	2						
After	Phase	292	22	278	285	275	279	569
	Mag	0.143947	0.195186	1.311113	2.66641	2.831165	3.536542	4.419725
After #1 Blade	Tab 6	9						
After	Phase	292	139	295	285	288	286	272
After	Mag	0.144053	0.081535	0.94485	1.745501	2.058194	2.538465	3.105973
After #1 Blade	Tab 8	2						
After	Phase	4	25	323	318	588	293	276
After	Mag	0.455483	1.790217	0.495224	1.165633	1.534647	1.781012	2.607763
After #1 Blade	Ρ⁄Γ	12						
After	Phase	182	177	316	326	351	349	339
After	Mag	0.53105	0.613787	0.587388	0.969178	0.908393	1.397406	1.458178
#1 Blade	W	1017						
Pred	Phase	115	92	18	342	170	341	218
Pred	Mag	0.041371	0.040576	0.148341	0.067199	0.087184	0.180572	0.160983
۸ib	Phase	292	219	348	326	351	349	339
Vib	Mag	0.144012	0.141529	0.70392	0.96919	0.908439	1.39741	1.45824
Batch	20	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Appendix D: AH-64D Database

Note: All data in this appendix was manually typed into Microsoft Excel spreadsheets. The data was originally presented with a graphic user interface in the PC-GBS program.

Flight Log

Flight #	Туре	BUNO	Date	Time	Vib Category
1	AH-64D	00-05184	6/8/2005	25649	good
2	AH-64D	01-05276	9/29/2005	50641	good
3	AH-64D	01-05283	10/14/2005	81022	good
4	AH-64D	96-05024	9/15/2005	44633	good
5	AH-64D	99-05134	10/18/2005	95536	good
6	AH-64D	96-05024	9/15/2005	40530	above
7	AH-64D	99-05134	10/18/2005	40724	above
8	AH-64D	00-05184	8/20/2005	102558	above
9	AH-64D	01-05283	10/13/2005	101630	above
10	AH-64D	96-05024	9/7/2005	72518	above
11	AH-64D	00-05184	8/20/2005	105108	caution
12	AH-64D	01-05283	10/13/2005	95431	caution
13	AH-64D	01-05276	9/29/2005	43748	caution
14	AH-64D	01-05277	10/18/2005	55723	caution
15	AH-64D	01-05277	11/22/2005	25833	caution
16	AH-64D	01-05283	10/13/2005	92020	exceed
17	AH-64D	96-05134	6/9/2005	23649	exceed
18	AH-64D	01-05276	9/29/2005	21844	exceed
19	AH-64D	01-05277	10/18/2005	31631	exceed
20	AH-64D	01-05277	10/18/2005	43503	exceed

Г									ر د						<u></u>						
	4	0	0	0	0	0	0	0	-0.5	0	1	0	0	0	0.5	0	0	0	0	1	0
	9	-0.5	0	0	0	0	1	0	0	0	0	١-	0	0	0	0	0	0	7	0	0
4	8	0	0	0	0	0	0	-1	0	-3	0	0	1	1	0	-0.5	0	-1	0	0	0
	P/L	0	0	0	0	0	0	0	0	0	0	-1.25	1.75	0	0	0	0	0	1.5	0	0
	Wt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	4	0	0	0	0.5	0	0	0	0	0	1.5	0	0	0	0.5	0	-0.5	0	0	1.5	0
	9	0	0	0	0	-0.5	2	-1	0	0	0	0	0	0	0	0	0	0	0	0	0
3	8	-3	-1	0	0	0	0	0	-3	-2	0	-2	-1.5	0	0	-1	0	-3.5	0	0	0
	P/L	0	1.25	0	0	0	0	0	0	1.75	0	-0.5	1.25	0	0	0.5	-2.5	0	1	0	0
	Wt	0	0 1	0	0	0	0	0	0	0 1	0	- 0	0 1	0	0) 0	- 0	0	0	0	0
	>)))))))))))))))))))
	4	0	0	0.5	0	0	0	0	0	-0.5	0	0	0.5	0	0	0	1.5	0	0	0	0
	9	0	0	0	0	9.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	8	-1.5	9.0-	0	9.0	0	9'0-	0	7-	0	1.5	-3.5	0	0	3	0	0	0	0	2.5	2.5
	P/L	0	0.5	-1.5	9.0	-1	2	-1.5	0	0	1.5	0	0	-0.75	0	-0.75	0	-1-	0	0	0
	Wt	-165	113	0	0	113	217	0	-278	0	0	0	-113	-165	113	-452	-391	113	-165	0	113
	4	0	0	0	0	0	0	0	-1	-1.5	0	0	9.0	0	0	0	0	0	0	0	0
	9	-2	0	0	0	0	0	0	0	0	0	-2	0	0	0	0	2.5	0	1	0	0
1	8	0	0	0	3	0	4	-0.5	0	0	2	0	0	2	2	0	0	0	0	1	9.0
	P/L	0	0	-0.5	-1	-0.5	-1.75	-0.75	0	0	0	0	0	-1.25	0	0	0	2	0	0	0
	Wt	0	-217	-391	0	-113	- 0	- 0	-165	0	443	0	-113	-278	-226	339	504	330	-278	0	-330
Flight #		1	2	3	4	- 2	9	7	8	6	10	11	12 -	13	14	15	16	17	18	19	20
Flig																					. 4

	After	Phase	119	85	253	259	259	231	225
	After △	Mag	.147333	0.121134	0.55586	.402824	. 262238	7.289905	0.408414
			0	0.12	0.5	0.40	0.26	0.28	0.40
	After #1 Blade	e Tab 4	0.5						
	Afte	Phase	3 119	4 85	1 258	9 261	9 280	4 210	5 205
	After	Mag	0.147333	0.121134	0.393931	0.178009	0.096079	0.147234	0.192395
	After #1 Blade	Tab 6	0.5						
	After	Phase	119	98	252	261	276	117	182
	After	Mag	0.147333	0.121134	0.310213	0.119514	0.029224	0.11779	0.189556 182
	#1 Blade	Tab 8	9.0						
	After	Phase	110	74	251	266	22	169	172
	After	Mag	0.143753	0.193567	0.247826	0.065325	0.015256	0.115214	0.186908
	After #1 Blade	ЪГ	0.5						
	After	Phase	131	108	242	226	126	149	150
	After	Mag	0.191353	0.135004	0.276389	0.07598	0.038643	0.152142	0.192823
	#1 Blade	W	113						
	Pred	Phase	152	95	252	340	15	22	195
Full Soln	Pred	Mag	0.108185	0.046326	0.118116	0.158664	0.098376	0.138725	0.027307
	٨ib	Phase	119	82	249	260	71	130	135
	Vib	Mag	0.147334	0.121139	0.232054	0.033979	0.06676	0.143341	0.195829
	Flight #	1	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert 0.195829 135 0.027307

		_	_	_	_	_	_	
After	Phase	188	88	227	255	265	250	241
After	Mag	0.137855	0.175687	0.373701	0.367343	0.358067	0.392472	0.618217
After #1 Blade	Tab 4	0.5						
After	Phase	188	88	216	251	282	249	241
After	Mag	0.137855	0.175687	0.21657	0.143192	0.198468	0.229885	0.381346
#1 Blade	Tab 6	0.5						
After	Phase	188	88	191	544	281	243	233
After	Mag	0.137855	0.175687	0.190483	0.086265	0.131396	0.153517	0.325916
#1 Blade	Tab 8	9.0						
After	Phase	186	62	172	226	292	241	230
After	Mag	0.115876	0.2458	0.173883	0.034177	0.099561	0.136959	0.298056
#1 Blade	P/L	0.5						
After	Phase	181	104	176	191	270	218	222
After	Mag	0.189821	0.189312	0.223278	0.073477	0.068256	0.105366	0.234933
#1 Blade	Wt	113						
Pred	Phase	202	7	171	352	2	22	192
Pred	Mag	0.073521	0.071707	0.092035	0.06653	0.117364	0.078936	0.088054
Vib	Phase	188	88	166	164	321	216	218
Vib	Mag	0.137854	0.175692	0.182888	0.026498	0.057402	0.054141	0.185824
Flight #	2	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	217	40	267	294	253	256	252
After	Mag	0.171605	0.09924	0.585511	0.473454	0.45937	0.494864	0.64178
After #1 Blade	Tab 4	0.5						
After	Phase	217	40	276	318	257	259	259
After	Mag	0.171605	0.09924	0.441	0.319775	0.284257	0.333368	0.412341
After #1 Blade	Tab 6	0.5						
After	Phase	217	40	276	328	250	258	254
After	Mag	0.171605	0.09924	0.351019	0.292306	0.225086	0.254159	0.342313
#1 Blade	Tab 8	0.5						
After	Phase	220	47	280	339	249	258	253
After	Mag	0.151074	0.175026	0.29289	0.281118	0.187595	0.237273	0.310233
#1 Blade	P/L	0.5						
After	Phase	204	70	270	337	236	249	253
After	Mag	0.209493	0.075542	0.297454	0.232512	0.182504	0.188739	0.237927
#1 Blade	Wt	113						
Pred	Phase	274	82	223	36	116	54	81
Pred	Mag	0.10053	0.096774	0.086036	0.187158	0.110519	0.10108	0.083129
Vib	Phase	217	40	280	345	244	259	257
Vib	Mag	0.171603	0.099243	0.273403	0.269403	0.132743	0.146512	0.189846
Flight #	3	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

b Pred	Pre	~	Pred	#1 Blade	After	After	After #1 Blade	After	After	After #1 Blade	After	After	After #1 Blade	After	After	After #1 Blade	After	After
hase Mag Phase Wt	_	Phase Wt	W		Mag	Phase	P/L	Mag	Phase	Tab 8	Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
4 0.141861 284 113 0.0	113	113		0.0	0.089944	281	0.5	0.134861	313	0.5	0.126138	304	0.5	0.126138	304	0.5	0.126138	304
5 0.022262 94 0.20	94	94 0.20	0.20	0.2	0.206201	100		0.26764	2.2		0.196114	85		0.196114	85		0.196114	
1 0.058701 235 0.048	1 235		0.04	0.04	0.045478	81		0.079266	43		0.043804	351		0.110246	299		0.24367	264
353 0.085996 262 0.076126	262		0.076	0.076	3126	332		0.124386	338		0.141473	316		0.181489	300		0.37878	277
1 0.189401 119 0.23	1 119	119 0.23	0.23	0.23	0.230157	83		0.214213	72		0.176664	72		0.123414	99		0.059833	268
3 0.044767 212 0.13	212		0.13	0.13	0.139859	4		0.163925	344		0.164973	338		0.20046	315		0.308083	287
0.144649 230 0.202109	230		0.202	0.202	109	349		0.210016	329		0.224628	321		0.287701	311		0.429774	280

	a		_		_			
After	Phase	193	336		264	271	265	241
After	Mag	0.044328	0.166399	0.213242	0.28043	0.329886	0.335828	0.371501
After #1 Blade	Tab 4	0.5						
After	Phase	193	988	321	287	567	278	241
After	Mag	0.044328	0.166399	0.105896	0.061735	0.183397	0.182456	0.134575
After #1 Blade	Tab 6	9.0						
After	Phase	193	988	4٤	228	301	588	802
After	Mag	0.044328	0.166399	0.074612	0.027288	0.118612	0.107796	0.090126
#1 Blade	Tab 8	0.5						
After	Phase	190	098	4 4	21	317	584	188
After	Mag	0.022159	0.194145	0.119504	0.066179	0.096884	0.094323	0.075665
After #1 Blade	P/L	0.5						
After	Phase	176	330	64	96	310	302	133
After	Mag	0.096721	0.117276	0.081921	0.062204	0.054143	0.037098	0.082274
#1 Blade	Wt	113						
Pred	Phase	96	351	138	120	317	329	164
Pred	Mag	0.064589	0.038314	0.051041	0.075882	0.06781	0.053246	0.02734
Vib	Phase	193	336	52	64	353	2	105
Vib	Mag	0.044327	0.166397	0.129734	0.092257	0.079734	206090.0	0.105472
Flight #	2	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

<u>_</u>	ě							
After	Phase	158	103	236	221	271	248	252
After	Mag	0.031514	0.320976	0.495818	0.589656	0.491673	0.488001	0.686944
After #1 Blade	Tab 4	9.0						
After	Phase	158	103	233	202	283	247	258
After	Mag	0.031514	0.320976	0.330591	0.432536	0.338409	0.325782	0.456971
After #1 Blade	Tab 6	9.0						
After	Phase	158	103	220	195	284	242	254
After	Mag	0.031514	0.320976	0.272705	0.405113	0.271359	0.250236	0.387194
#1 Blade	Tab 8	0.5						
After	Phase	114	92	211	188	288	241	253
After	Mag	0.01926	0.379482	0.225426	0.380389	0.239403	0.233729	0.355111
#1 Blade	Ρ⁄L	9.0						
After	Phase	161	111	207	186	281	229	252
After	Mag	0.087114	0.34375	0.274098	0.427116	0.206751	0.198203	0.282758
#1 Blade	Wt	113						
Pred	Phase	171	13	66	178	4	66	176
Pred	Mag	0.049738	0.058997	0.066935	0.196929	0.103515	0.152566	0.103033
Vib	Phase	158	103	206	183	296	232	256
Vib	Mag	0.031513	0.320981	0.221451	0.37899	0.190015	0.147873	0.234462
Flight #	9	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	29	355	266	260	249	257	226
After	Mag	0.038475	0.28819	0.115074	0.185537	0.272563	0.230925	0.368882
After #1 Blade	Tab 4	0.5						
After	Phase	58	322	23	89	253	272	201
After	Mag	0.038475	0.28819	0.078653	0.039857	0.095802	0.071589	0.154331
After #1 Blade	Tab 6	9.0						
After	Phase	29	322	63	9/	212	29	173
After	Mag	0.038475	0.28819	0.135287	0.097717	0.049444	0.014761	0.159991
After #1 Blade	Tab 8	0.5						
After	Phase	24	7	29	22	162	23	161
After	Mag	0.060286	0.331986	0.196605	0.152435	0.033258	0.029293	0.162735
After #1 Blade	Ρ⁄L	9.0						
After	Phase	119	326	82	94	153	06	138
After	Mag	0.040309	0.236734	0.174015	0.15816	260920.0	0.07903	0.182609
#1 Blade	W	113						
Pred	Phase	102	6	169	141	253	339	187
Pred	Mag	0.076006	0.027742	0.028569	0.091276	0.062634	0.085874	0.010565
Vib	Phase	29	322	71	78	110	71	123
Vib	Mag	0.038476	0.288189	0.212138	0.182933	0.070521	0.118454	0.195892
Flight #	7	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	117	100	241	244	232	237	228
After	Mag	0.156642	0.199917	0.6684	0.636284	0.526489	0.465021	0.698041
After #1 Blade	Tab 4	0.5)))	_
After	Phase	117	100	203	199	166	134	155
After	Mag	0.156642	0.199917	0.265431	0.203835	0.248338	0.184495	0.305715
After #1 Blade	Tab 6	-0.5						
After	Phase	117	100	234	232	216	219	213
After	Mag	0.156642	0.199917	0.431881	0.370254	0.324935	0.247389	0.436293
#1 Blade	Tab 8	0.5						
After	Phase	109	88	231	228	211	217	209
After	Mag	0.153756	0.262826	0.374718	0.32052	0.296339	0.233746	0.415785
#1 Blade	P/L	9.0						
After	Phase	129	113	226	221	204	202	201
After	Mag	0.199384	0.22192	0.41524	0.347547	0.317044	0.221757	0.369025
#1 Blade	Wt	113						
Pred	Phase	204	71	268	225	260	317	261
Pred	Mag	0.036682	0.063588	0.146294	0.078456	0.072095	0.102035	0.170363
Vib	Phase	117	100	228	224	202	197	196
Vib	Mag	0.156643	0.199922	0.364091	0.298852	0.264106	0.173487	0.328146
Flight #	8	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Arter	#1 Blade After After	1 Blade After After #1 Blade After After	#1 Blade After After #1 Blade After After #	Pred #1 Blade After After #1 Blade After After	Pred Pred #1 Blade After After #1 Blade After After
Mag Phase Tab 8	Phase	Mag Phase P/L Mag Phase	Mag Phase P/L Mag Phase	Wt Mag Phase P/L Mag Phase	Phase Wt Mag Phase P/L Mag Phase
0.022366 93 0.5	93	-0.5 0.022366 93	0.055371 126 -0.5 0.022366 93	0.055371 126 -0.5 0.022366 93	172 113 0.055371 126 -0.5 0.022366 93
0.224777 41	24)	24	0.273443 54	347 0.273443 54
0.139306 263	253 0.139306	0.139306	253 0.139306	0.193493 253 0.139306	145 0.193493 253 0.139306
0.299281 307	295 0.299281	0.299281	295 0.299281	0.142892 37 0.321754 295 0.299281	37 0.321754 295 0.299281
0.215257 312	290 0.215257	0.215257	290 0.215257	290 0.215257	117 0.264715 290 0.215257
0.339966 322		0.339966	302 0.339966	302 0.339966	47 0.38892 302 0.339966
0.453358 329	309 0.453358	0.453358	309 0.453358	81 0.498567 309 0.453358	309 0.453358

a)	_	_	_	_	_	_	_
Phase	343	09	222	230	276	260	247
Mag	0.13623	0.139334	0.620184	0.556826	0.225044	0.147194	0.263283
Tab 4	9.0						
Phase	343	09	215	214	327	16	291
Mag	0.13623	0.139334	0.466852	0.373325	0.113285	0.030118	0.038355
Tab 6	9.0						
Phase	343	09	504	506	ε	99	76
Mag	0.13623	0.139334	0.432435	0.336469	0.081309	0.09546	0.039708
Tab 8	0.5						
Phase	337	64	191	186	22	73	72
Mag	0.118188	0.061568	0.399192	0.293024	0.186653	0.292856	0.31162
Ρ⁄L	-0.5						
Phase	342	82	196	194	49	81	81
Mag	0.080572	0.130294	0.448525	0.346696	0.085054	0.160854	0.143489
Wt	113						
Phase	214	22	247	221	338	337	255
Mag	0.072815	0.071208	0.218458	0.02039	0.177066	0.014499	0.151446
Phase	343	09	194	192	44	71	75
Mag	0.13623	0.139338	0.397807	0.296432	0.138551	0.202343	0.190663
10	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert
	Phase Mag Phase Wt Mag Phase P/L Mag Phase Tab 8 Mag Phase Tab 8 Mag Phase Tab 6 Mag Phase Tab 4 I	Mag Phase Mag Phase Wt Mag Phase Phase Tab 8 Mag Phase Tab 6 Mag Phase Tab 7 Phase Tab 7 Mag Phase Tab 7 Phase Tab 7	Mag Phase Mag Phase Phase Phase Tab 8 Mag Phase Tab 9 Phase Tab 9 Phase Phase Tab 9 Phase Ph	Mag Phase Wt Mag Phase Phase Tab 8 Mag Phase Tab 9 Phase Phase </td <td>Mag Phase Mag Phase Phase Phase Tab 8 Mag Phase Tab 9 Phase Phase</td> <td>Mag Phase Mag Phase Phase Phase Tab 8 Mag Phase Tab 8 Tab 9 Phase Tab 9 Mag Phase Tab 9 Phase Phase</td> <td>Mag Phase Mag Phase PA Mag Phase Tab 6 Mag Phase Tab 8 Tab 8 Mag Phase Tab 8 Tab 8 Tab 8 Tab 6 Mag Phase Tab 8 Tab 8 Tab 6 Mag Phase Tab 8 Tab 8 Tab 9 Tab 9</td>	Mag Phase Mag Phase Phase Phase Tab 8 Mag Phase Tab 9 Phase Phase	Mag Phase Mag Phase Phase Phase Tab 8 Mag Phase Tab 8 Tab 9 Phase Tab 9 Mag Phase Tab 9 Phase Phase	Mag Phase Mag Phase PA Mag Phase Tab 6 Mag Phase Tab 8 Tab 8 Mag Phase Tab 8 Tab 8 Tab 8 Tab 6 Mag Phase Tab 8 Tab 8 Tab 6 Mag Phase Tab 8 Tab 8 Tab 9 Tab 9

After	Phase	111	107	245		235	223	233
After	Mag	0.15467	0.193823	0.563415	0.894473	0.368624	0.36473	0.523097
After #1 Blade	Tab 4	9.0						
After	Phase	111	101	246	282	222	504	227
After	Mag	0.15467	0.193823	0.397217	0.68037	0.198461	0.233964	0.290292
After #1 Blade	Tab 6	0.5						
After	Phase	111	107	238	235	205	185	212
After	Mag	0.15467	0.193823	0.323232	0.627196	0.171964	0.204034	0.253442
After #1 Blade	Tab 8	0.5						
After	Phase	103	63	234	233	195	180	206
After	Mag	0.154092	0.251428	0.264686	0.575935	0.149806	0.198772	0.233752
After #1 Blade	Ρ⁄L	9.0						
After	Phase	91	92	235	234	152	139	159
After	Mag	0.128037	0.177391	0.203732	0.50658	0.105909	0.183022	0.143071
#1 Blade	Wt	-113						
Pred	Phase	101	45	114	254	98	63	22
Pred	Mag	0.098763	0.208516	0.068638	0.29081	0.125204	0.257816	0.035089
Vib	Phase	111	107	230	231	172	154	177
Vib	Mag	0.154671	0.193828	0.253349	0.551916	0.138373	0.197703	0.162766
Flight #	11	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	292	22	186	125	92	161	153
After	Mag	0.01876	0.316143	0.09559	0.240632	0.337776	0.431897	0.492819
After #1 Blade	Tab 4	0.5						
After	Phase	292	22	92	94	98	113	106
	Mag	0.01876	0.316143	0.474939	0.702704	0.816481	0.717935	0.904459
After #1 Blade	Tab 6	-0.5						
After	Phase	292	22	26	100	87	133	124
After	Mag	0.01876	0.316143	0.227679	0.481249	0.56526	0.507777	0.608735
After #1 Blade	Tab 8	0.5						
After	Phase	338	59	65	26	98	131	122
After	Mag	0.030752	0.382543	0.287162	0.531405	0.601953	0.516805	0.633204
After #1 Blade	P/L	0.5						
After	Phase	181	28	103	102	06	129	118
After	Mag	39	0.273239	0.284593	0.549772	0.624948	0.570705	0.684896
#1 Blade	Wt	113						
Pred	Phase	222	89	222	166	69	179	193
Pred	Mag	0.040318	0.043536	0.206619	0.200269	0.213387	0.180247	0.15668
۸ib	Phase	292	22	93	26	98	124	114
Vib	Mag	0.018759	0.316144	0.306206	0.5631	0.65862	0.573725	0.710215
Flight #	12	-PG100	over Lat	30K Vert	0 K Vert	00 K Vert	20 K Vert	t0 K Vert

Flight #	Vib	Vib	Pred	Pred	#1 Blade	After	After 3	#1 Blade	After	After	#1 Blade	After	After	#1 Blade	After	After #	After #1 Blade	After	After
13	Mag	Phase	Mag	Phase	Wt	Mag	Phase	Ρ⁄L	Mag	Phase	Tab 8	Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
FPG100	0.102177	135	0.038712	226	113	0.153439	145	0.5	0.0934	123	0.5	0.102177	135	9.0	0.102177	135	0.5	0.102177	135
Hover Lat	0.258375	73	0.054741	107		0.256592	82		0.333994	20		0.258371	23		0.258371	73		0.258371	73
60K Vert	0.268254	134	0.132165	319		0.284499	145)	0.251087	137		0.226521	150		0.187468	173		0.293202	205
80 K Vert	0.431669	140	0.031991	220		0.456175	146)	0.410709	144		0.394111	121		0.378266	159		0.410541	192
100 K Vert	0.486692	147	0.037732	176		0.508753	153)	0.465488	153		0.460012	158		0.426101	165		0.486626	186
120 K Vert	0.479786	143	0.05673	28		0.494423	149		0.452357	154		0.449664	156		0.434073	166		0.477488	186
140 K Vert	0.627742	146	0.065442	249		0.630496	151		0.616582	158		0.609306	161		0.573903	167		0.67869	187

After	Phase	185	233	292	281	280	568	303
After	Mag	0.151412	0.123409	0.385021	0.495047	0.371821	0.453571	0.700799
After #1 Blade	Tab 4	9.0						
After	Phase	185	233	61	9	38	20	9
After	Mag	0.151412	0.123409	0.114097	0.186806	0.180917	0.365528	0.572905
After #1 Blade	Tab 6	5.0-						
After	Phase	185	233	288	908	311	329	328
After	Mag	0.151412	0.123409	0.156534	0.257454	0.183101	0.326067	0.569585
#1 Blade	Tab 8	9.0						
After	Phase	183	225	306	317	322	332	331
After	Mag	0.129653	0.046142	0.10833	0.227144	0.16553	0.322187	0.557006
#1 Blade	Ρ⁄L	9.0						
After	Phase	196	258	338	334	322	322	348
After	Mag	0.101767	0.108894	0.110425	0.234069	0.182499	0.348079	0.574088
#1 Blade	Wt	-113						
Pred	Phase	164	299	102	358	129	33	325
Pred	Mag	0.029644	0.072491	0.00489	0.10971	0.059339	0.057369	0.067668
Vib	Phase	185	233	310	323	341	349	343
Vib	Mag	0.151411	0.123406	0.090014	0.205333	0.145414	0.313365	0.556559
# IHBH	14	FPG100	Hover Lat	19V X09	119 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	22	33	٠,	252	29	153	204
After	Mag	0.159403	0.395228	0.011474	0.057954	0.293732	0.173541	0.41445
After #1 Blade	Tab 4	0.5						
After	Phase	22	33	69	80	29	113	172
After	Mag	0.159403	0.395228	0.158281	0.167506	0.471007	0.25447	0.266018
After #1 Blade	Tab 6	0.5						
After	Phase	77	33	22	81	73	94	114
After	Mag	0.159403	0.395228	0.39398	0.397064	0.714442	0.522884	0.437909
After #1 Blade	Tab 8	-0.5						
After	Phase	21	37	73	62	71	105	152
After	Mag	0.181499 21	0.46738	0.298011	0.280596	0.564844	0.339711	0.309785 152
After #1 Blade	Ρ⁄L	9.0						
After	Phase	39	39	83	88	22	105	140
After	Mag	0.121522	0.358502	0.278354	0.285966	0.577788	0.397941	0.333922
#1 Blade	Wt	113						
Pred	Phase	216	80	258	224	23	148	225
Pred	Mag	0.132313	0.033657	0.084023	0.09342	0.246967	0.064539	0.251832
Vib	Phase	22	33	22	81	72	66	131
Vib	Mag	0.159404	0.395231	0.314577	0.311538	0.62077	0.421864	0.34276
Flight #	15	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Flight #	ΑiV	Vib	Pred	Pred	#1 Blade	After	After	After #1 Blade	After	After	After #1 Blade	After	After	#1 Blade	After	After	After #1 Blade	After	After
16	Mag	Phase	Mag	Phase	Wt	Mag	Phase	P/L	Mag	Phase	Tab 8	Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
FPG100	0.028967	192	0.231616	202	-113	0.033461	318	0.5	0.006911	181	0.5	0.028968	192	0.5	0.028968	192	0.5	0.028968	192
Hover Lat	0.047862	322	0.182607	88		0.099408	323		0.108638	34		0.047863	322		0.047863	322		0.047863	355
60K Vert	1.377877	25	0.316962	222		1.427667	21		1.366626	51		1.310357	20		1.250551	47		1.090039	45
80 K Vert	1.679968	47	0.239062	192		1.727462	46		1.658248	46		1.610597	45		1.56362	44		1.383281	39
100 K Vert	2.238233	49	0.368912	41		2.291158	67		2.19064	49		2.156752	48		2.117927	47		1.952002	45
120 K Vert	2.293396	25	0.104699	107		2.343457	21		2.211074	51		2.195576	51		2.128639	49		1.978369	48
140 K Vert	2.39225	24	0.418802	178		2.443165	24		2.274128	23		2.245773	23		2.195425	51		1.962461	20

Flight #	Vib	Vib	Pred	Pred	#1 Blade	After	After ;	After #1 Blade	After	After									
17	Mag	Phase	Mag	Phase	W	Mag	Phase	P/L	Mag	Phase	Tab 8	Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
FPG100	0.092967	302	0.089895	100	113	0.062222	267	9.0	0.10171	315	0.5	0.092968	302	0.5	0.092968	302	0.5	0.092968	302
Hover Lat	0.37259	293	0.087192	62		0.348146	286		0.334658	304		0.372595	293		0.372595	293		0.372595	293
60K Vert	0.567993	69	0.152849	258		0.521534	62)	0.554882	28		0.496065	22		0.432761	48		0.273959	68
80 K Vert	0.793623	09	0.05944	341		0.752262	62		0.76729	69		0.714919	29		0.661748	22		0.462307	44
100 K Vert	0.956517	64	0.053318	310		0.908716	92		0.90283	62		0.866043	29		0.815867	69		0.64065	29
120 K Vert	1.146847	64	0.111113	298		1.100343	92		1.058222	63		1.041632	63		0.96727	61		0.807517	69
140 K Vert	1.842375	29	0.162683	100		1.792516	89		1.720776	29		1.689411	29		1.626215	99		1.390128	99

	a)	_	_	_	_	_	_	_
After	Phase	243	68	188	185	177	182	182
After	Mag	0.014754	0.276313	0.845619	1.015906	1.180738	1.153982	1.354879
After #1 Blade	Tab 4	9.0						
After	Phase	243	39	177	172	169	174	172
After	Mag	0.014754	0.276313	0.759373	0.973521	1.129472	1.10612	1.251699
#1 Blade	Tab 6	9.0						
After	Phase	243	36	171	169	166	170	169
After	Mag	0.014754	0.276313	0.779395	0.973823	1.157444	1.106767	1.278853
#1 Blade	Tab 8	0.5						
After	Phase	334	43	166	166	164	169	167
After	Mag	0.016441	0.351071	0.777118	0.971582	1.156855	1.105208	1.281025
#1 Blade	Ρ⁄L	9.0						
After	Phase	177	48	168	166	163	166	164
After	Mag	0.059969	0.244634	0.824281	1.020928	1.198428	1.13428	1.280445
#1 Blade	Wt	113						
Pred	Phase	297	22	329	194	134	300	343
Pred	Mag	0.088017	0.088382	0.133241	0.186699	0.203814	0.093986	0.171415
Vib	Phase	243	36	165	164	161	164	162
Vib	Mag	0.014752	0.276315	0.787207	0.981633	1.166197	1.104326	1.265135
Flight #	18	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert
_	_	_				_	_	

After	Phase	164	345	247		245		246
	Mag	0.105433	0.064071	0.999265	1.235218	1.133321	1.150014	1.346317
After #1 Blade	Tab 4	9.0						
After	Phase	164	345	248	237	242	242	248
After	Mag	0.105433	0.064071	0.833614	1.021946	0.956118	0.989164	1.11064
After #1 Blade	Tab 6	9.0						
After	Phase	164	342	242	236	243	240	242
After	Mag	0.105433	0.064071	0.756052	0.968572	0.903243	0.915262	1.047388
#1 Blade	Tab 8	0.5						
After	Phase	157	56	244	235	242	240	245
After	Mag	0.087162	0.115107	0.694932	0.916911	0.866387	0.898857	1.016376
After #1 Blade	Ρ⁄L	0.5						
After	Phase	164	323	240	232	239	237	244
After	Mag	0.161091	0.013731	0.726722	0.937375	0.862776	0.860826	0.94531
#1 Blade	Wt	113						
Pred	Phase	164	345	28	110	170	134	26
Pred	Mag	0.105433	0.064069	0.151942	0.130403	0.027601	0.088086	0.170182
Vib	Phase	164	345	243	234	241	238	244
Vib	Mag	0.105432	0.064069	229089.0	0.892178	0.813141	0.812045	0.894919
Flight #	19	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After After	Mag Phase	0.166541 170	0.131767 209	0.364906 297	.595256 302	.668691 305	0.596486 314	0.932391 314
After #1 Blade	Tab 4	0.5 0.7	0.	0	0.3	0.0	0.3	5.0
After	Phase	170	209	33	0	351	6	358
After	Mag	0.166541	0.131767	0.289039	0.410177	0.468526	0.547088	0.837946
#1 Blade	Tab 6	-0.5						
After	Phase	170	209	339	329	324	337	333
After	Mag	0.166541	0.131767	0.25078	0.43789	0.544603	0.515833	0.84281
#1 Blade	Tab 8	9.0						
After	Phase	167	178	323	336	328	339	335
After	Mag	0.146704	0.07352	0.250542	0.426283	0.532942	0.514108	0.832692
After #1 Blade	Ρ⁄L	9.0						
After	Phase	169	199	349	332	328	345	340
After	Mag	0.221847	0.175512	0.201918	0.377989	0.489345	0.480046	0.822611
#1 Blade	Wt	113						
Pred	Phase	82	319	126	322	310	62	18
Pred	Mag	0.034084	0.054673	0.101851	0.085991	0.118731	0.077926	0.074918
۸ib	Phase	170	209	358	340	334	349	343
Vib	Mag	0.16654	0.131765	0.243486	0.412842	0.512283	0.511324	0.836586
Flight #	20	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

	After	Phase	119	82	256	259	257	253	248
	After	Mag	0.147334	0.121136	3.469777	3.711092	3.209629	3.393944	4.439963
	After #1 Blade	Tab 4	2						
	After	Phase	119	85	268	261	269	255	256
	After	Mag	0.147334	0.121136	1.902408	1.469799	1.509811	1.775446	2.114723
	#1 Blade	Tab 6	2						
	After	Phase	119	82	260	262	259	249	243
	After	Mag	0.147334	0.121136	1.025064	0.886707	0.871592	0.995949	1,454654
	#1 Blade	Tab 8	2						
	After	Phase	32	69	274	273	263	253	244
	After	Mag	0.516736	1.97084	0.667282	0.792524	1.290038	2.087897	2.838781
	After #1 Blade	P/L	12						
	After	Phase	153	157	224	208	211	202	211
	After	Mag	0.613976	0.487154	0.675933	0.480176	0.434676	0.481239	0.46234
	#1 Blade	۸	1017						
	Pred	Phase	152	92	252	340	15	25	195
Full Soln	Pred	Mag	0.108185	0.046326	0.118116	0.158664	0.098376	0.138725	20822010
_	Vib	Phase	119	82	249	260	7.1	130	135
	Vib	Mag	0.147334	0.121139	0.232054	0.033979	0.06676		0.195829
	Flight #	-	FPG100	Hover Lat 0.121139	60K Vert	80 K Vert	100 K Vert	120 K Vert 0.143341	140 K Vert 0.195829

Flight #	qiA	Vib	Pred	Pred	#1 Blade	After	After	After #1 Blade	After	After									
2	Mag	Phase	Mag	Phase	W	Mag	Phase	P/L	Mag	Phase	Tab 8	Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
FPG100	0.137854	188	0.073521	207	1017	0.627036	168	12	0.394766	18	2	0.137855	188	2	0.137855	188	2	0.137855	188
Hover Lat	0.175692	88	0.071707	4		0.515893	151		2.01495	09		0.17569	68		0.17569	88		0.17569	88
60K Vert	0.182888	166	0.092035	171		0.617368	200		0.408627	264		0.796996	250		1.648836	264		3.243327	253
80 K Vert	0.026498	164	0.06653	352		0.480202	203		0.75082	271		0.849293	260		1.431996	260		3.672725	259
100 K Vert	0.057402	321	0.117364	7		0.476788	223		1.388594	564		0.967702	797		1.611941	270		3.307327	258
120 K Vert	0.054141	216	986820.0	77		0.513844	219		2.212799	255		1.116778	254		1.903401	258		3.518763	254
140 K Vert	0.185824	218	0.088054	192		0.636715	231		3.068859	246		1.687253	247		2.361814	257		4.675271	249

After	ш	217	40	258	263	256	255	251
After	Mag	0.171604	0.09924	3.489215	3.706158	3.408682	3.62194	4.703198
After #1 Blade	Tab 4	9						
After	Phase	217	40	272	272	292	528	260
After	Mag	0.171604	0.09924	1.954359	1.490378	1.696737	2.009215	2.409335
After #1 Blade	Tab 6	2						
After	Phase	217	40	268	278	257	256	251
After	Mag	0.171604	0.09924	1.063685	0.924316	1.067493	1.220532	1.714695
After #1 Blade	Tab 8	2						
After	Phase	9	29	284	290	260	256	248
After	Mag	0.376155	1.956399	0.740752	0.882398	1.483653	2.31688	3.090508
After #1 Blade	P/L	12						
After	Phase	176	161	236	239	222	229	242
After	Mag	0.616925	0.404036	0.631219	0.307008	0.608079	0.579821	0.637074
#1 Blade	W	1017						
Pred	Phase	274	82	223	36	116	54	81
Pred	Mag	0.10053	0.096774	0.086036	0.187158	0.110519	0.10108	0.083129
Vib	Phase	217	40	280	345	244	259	257
Vib	Mag	0.171603	0.099243	0.273403	0.269403	0.132743	0.146512	0.189846
Flight #	3	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Vib Vib Pred Pred #1 Blade After After #1 Blade After #1 Blade	Pred #1 Blade After After #1 Blade After	Pred #1 Blade After After #1 Blade After	#1 Blade After After #1 Blade After	After After #1 Blade After	After #1 Blade After	After	After	After	After #1 Blade	#1 Blade		After	After	After #1 Blade	After	After	After #1 Blade	After	After
Mag Phase Mag Phase Wt Mag Phase P/L Mag Phase Tab 8	Mag Phase Wt Mag Phase P/L Mag Phase	Phase Wt Mag Phase P/L Mag Phase	Wt Mag Phase P/L Mag Phase	Phase P/L Mag Phase	Phase P/L Mag Phase	P/L Mag Phase	Mag Phase	Phase		Tab 8		Mag	Phase	Tab 6	Mag	Phase	Tab 4	Mag	Phase
174 12	284 1017 0.409063 174 12	284 1017 0.409063 174 12	1017 0.409063 174 12	0.409063 174 12	174 12	12		0.58362 4 5	4 5	2	-	0.126137	304	2	0.126137	304	9	0.126137	304
0.196119 85 0.022262 94 0.515384 149 2.038546 60	94 0.515384 149 2.038546	94 0.515384 149 2.038546	149 2.038546	149 2.038546	149 2.038546	2.038546					\vdash	0.196117	85		0.196117	85		0.196117	82
.089737 54 0.058701 235 0.393628 207 0.419738 296 S	235 0.393628 207 0.419738	235 0.393628 207 0.419738	0.393628 207 0.419738	207 0.419738	207 0.419738	0.419738	0.419738 296	0.419738 296	296			0.72142	267		1.612445	272		3.153787	257
0.11473 353 0.085996 262 0.367034 214 0.787329 281	262 0.367034 214 0.787329	262 0.367034 214 0.787329	0.367034 214 0.787329	214 0.787329	214 0.787329	0.787329			281			0.857027	569		1.435859	266		3.668092	261
0.270319 74 0.189401 119 0.322556 185 1.08892 264	119 0.322556 185 1.08892	119 0.322556 185 1.08892	0.322556 185 1.08892	185 1.08892	185 1.08892	1.08892			264			0.669016	261		1.313718	271		3.007427	257
0.183881 13 0.044767 212 0.306325 235 2.093798 261	212 0.306325 235 2.093798	212 0.306325 235 2.093798	0.306325 235 2.093798	235 2.093798	235 2.093798	2.093798			261			1.003385	265		1.794474	264		3.393623	258
0.227382	230 0.374188 265 2.82174	230 0.374188 265 2.82174	0.374188 265 2.82174	265 2.82174	265 2.82174	2.82174	_	_	251			1.462387	259		2.191576	266		4.444047	253

After	Phase	193	36	257	260	258	256	250
Af	Ph							L
After	Mag	0.044328	0.166396	3.118788	3.586263	3.275602	3.459453	4.431952
After #1 Blade	Tab 4	9						
After	Phase	193	336	274	262	271	260	259
After	Mag	0.044328	0.166396	1.584705	1.347121	1.586273	1.849935	2.126249
After #1 Blade	Tab 6	2						
After	Phase	193	336	269	264	264	259	248
After	Mag	0.044328	0.166396	0.691348	0.764662	0.93707	1.059035	1.442139
#1 Blade	Tab 8	2						
After	Phase	16	23	305	277	265	258	246
After	Mag	0.48681	1.89479	0.407792	0.679607	1.359302	2.155202	2.823399
#1 Blade	P/L	12						
After 3	Phase	165	179	202	196	223	225	224
After	Mag	0.538325	0.305586	0.355792	0.393316	0.433228	0.413133	0.39707
#1 Blade	Wt	1017						
Pred	Phase	96	351	138	120	317	329	164
Pred	Mag	0.064589	0.038314	0.051041	0.075882	0.06781	0.053246	0.02734
Vib	Phase	193	336	25	64	353	2	105
۸iV	Mag	0.044327	0.166397	0.129734	0.092257	0.079734	0.060907	0.105472
Flight #	2	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	158	103	253	254	528	254	251
After	Mag	0.031514	0.320979	3.377255	3.784949	3.431583	3.610034	4.751693
After #1 Blade	Tab 4	2						
After	Phase	158	103	264	248	271	257	260
After	Mag	0.031514	0.320979	1.786632	1.558529	1.747282	1.994773	2.455431
#1 Blade	Tab 6	9						
After	Phase	158	103	252	240	265	253	251
After	Mag	0.031514	0.320979	0.934366	1.000542	1.097318	1.210337	1.760744
#1 Blade	Tab 8	2						
After	Phase	18	64	263	247	566	255	248
After	Mag	0.5064	2.099317	0.548633	0.849021	1.519723	2.304896	3.137599
#1 Blade	P/L	12						
After	Phase	163	144	210	195	536	223	243
After	Mag	0.530811	0.655439	0.694907	0.824239	0.554483	0.604639	0.68167
#1 Blade	Wt	1017						
Pred	Phase	171	13	66	178	4	66	176
Pred	Mag	0.049738	0.058997	0.066935	0.196929	0.103515	0.152566	0.103033
Vib	Phase	158	103	206	183	596	232	256
QiA	Mag	0.03151	0.320981	0.221451	0.37899		0.147873	
Flight #	9	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert 0.190015	120 K Vert	140 K Vert 0.234462

After	Phase	58	322	256	259	256	255	248
	Mag	0.038476	0.288188	3.023351	3.490151	3.220853	3.35961	4.402621
After #1 Blade	Tab 4	2						
After	Phase	58	322	273	797	267	528	257
	Mag	0.038476	0.288188	1.484996	1.251569	1.509763	1.746484	2.081958
After #1 Blade	Tab 6	2						
After	Phase	29	322	268	262	256	256	244
After	Mag	0.038476	0.288188	0.592895	0.669214	0.879018	0.95695	1.417772
After #1 Blade	Tab 8	2						
After	Phase	16	20	309	278	261	256	244
After	Mag	0.56845	2.013531	0.321649	0.583497	1.295069	2.053882	2.801027
After #1 Blade	P/L	12						
After	Phase	160	164	189	182	208	210	210
After	Mag	0.473569	0.177133	0.336511	0.381138	0.473127	0.363582	0.422995
#1 Blade	W	1017						
Pred	Phase	102	6	169	141	253	339	187
Pred	Mag	0.076006	0.027742	0.028569	0.091276	0.062634	0.085874	0.010565
Vib	Phase	59	322	71	78	110	71	123
ΑiV	Mag	0.038476	0.288189	0.212138	0.182933	0.070521	0.118454	0.195892
Flight #	7	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	117	100	253	257	253	253	247
After /	Mag	0.156644	0.19992	3.562783		_	3.573283	4.716481
`	Ž	0.15	0.18	3.56	3.91	3.43292	3.57	4.71
After #1 Blade	Tab 4	2						
After	Phase	117	100	263	255	260	254	253
After	Mag	0.156644	0.19992	1.967847	1.68086	1.694711	1.952716	2.382435
After #1 Blade	Tab 6	9						
After	Phase	117	100	253	252	247	249	242
After	Mag	0.156644	0.19992	1.115346	1.103298	1.103303	1.174585	1.740379
After #1 Blade	Tab 8	2						
After	Phase	33	19	261	260	253	727	243
After	Mag	0.522911	2.015099	0.728244	0.980008	1.503443	2.266279	3.122397
After #1 Blade	P/L	12						
After	Phase	153	151	219	212	211	214	219
After	Mag	0.618578	0.56037	0.831049	0.747612	0.74603	0.623868	0.740809
#1 Blade	Wt	1017						
Pred	Phase	204	71	268	225	260	317	261
Pred	Mag	0.036682	0.063588	0.146294	0.078456	0.072095	0.102035	0.170363
Vib	Phase	117	100	228	224	202	197	196
Vib	Mag	0.156643	0.199922	0.364091	0.298852	0.264106	0.173487	0.328146
Flight #	8	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	24	45	257	263	260	260	256
After	Mag	0.034841	0.300405	3.398896	3.91788	3.462104	3.706767	4.750996
After #1 Blade	Tab 4	2						
After	Phase	24	45	270	569	273	267	569
After	Mag	0.034841	0.300405	1.844419	1.690857	1.792528	2.123185	2.537836
After #1 Blade	Tab 6	2						
After	Phase	24	45	797	273	268	569	564
After	Mag	0.034841	0.300405	0.957465	1.115837	1.13773	1.336429	1.793082
#1 Blade	Tab 8	2						
After	Phase	18	99	281	282	268	263	255
After	Mag	0.558642	2.156984	0.61946	1.053263	1.560436	2.415997	3.125411
After #1 Blade	P/L	12						
After	Phase	159	131	225	243	243	260	277
After	Mag	0.489224	0.376978	0.582608	0.518856	0.565221	0.598553	0.728676
#1 Blade	Wt	1017						
Pred	Phase	172	347	145	37	117	47	81
Pred	Mag	0.054794	0.066673	0.060204	0.142892	0.056053	0.060288	0.041995
Vib	Phase	24	45	566	304	302	310	314
Vib	Mag	0.034841	0.300408	0.15752	0.326126	0.255525	0.385712	0.486233
Flight #	6	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	343		250	255	258	255	250
After	Mag	0.136229	0.139335	3.441731	3.802865	3.164122	3.271088	4.326764
After #1 Blade	Tab 4	2						
After	Phase	343	09	258	251	272	260	261
After	Mag	0.136229	0.139335	1.818069	1.566887	1.479365	1.660786	2.031336
After #1 Blade	Tab 6	9						
After	Phase	343	09	242	245	264	257	250
After	Mag	0.136229	0.139335	1.009194	0.997167	0.828708	0.871903	1.336817
After #1 Blade	Tab 8	9						
After	Phase	6	28	242	253	566	257	247
After	Mag	0.649681	2.00265	0.600805	0.858157	1.250758	1.967304	2.715913
After #1 Blade	P/L	12						
After	Phase	163	154	204	200	213	199	223
After	Mag	0.363113	0.434118	0.862465	0.752162	0.351384	0.305409	0.283656
#1 Blade	Μ	1017						
Pred	Phase	214	22	247	221	336	337	255
Pred	Mag	0.072815	0.071208	0.218458	0.02039	0.177066	0.014499	0.151446
Vib	Phase	343	09	194	192	44	71	75
Λib	Mag	0.13623	0.139338	0.397807	0.296432	0.138551	0.202343	0.190663
Flight #	10	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	111	107		256		252	249
After	Mag	0.154671	0.193826	3.466069	4.171658	3.29089	3.438823	4.567345
After #1 Blade	Tab 4	2						
After	Phase	111	107	266	253	263	253	256
After	Mag	0.154671	0.193826	1.883528	1.932975	1.56406	1.819639	2.245811
After #1 Blade	Tab 6	9						
After	Phase	111	107	256	250	250	245	245
After	Mag	0.154671	0.193826	1.019405	1.357682	0.95573	1.049204	1.581697
After #1 Blade	Tab 8	2						
After	Phase	35	62	267	526	526	251	244
After	Mag	0.538393	1.994249	0.643948	1.226416	1.362661	2.134323	2.964859
After #1 Blade	P/L	12						
After	Phase	151	154	218	219	207	201	221
After	Mag	0.607094	0.575384	0.720112	0.985013	0.595046	0.568935	0.559271
#1 Blade	Wt	1017						
Pred	Phase	101	45	114	254	98	63	22
Pred	Mag	0.098763	0.208516	0.068638	0.29081	0.125204	0.257816	0.035089
Vib	Phase	111	107	230	231	172	154	177
۸iV	Mag	0.154671	0.193828	0.253349	0.551916	0.138373	0.197703	0.162766
Flight #	11	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	292	22	254	256	254	247	244
After	Mag	0.018758	0.316142	2.944718	3.144341	2.631345	3.126156	4.033182
#1 Blade	Tab 4	2						
After	Phase	292	22	270	252	270	243	247
After	Mag	0.018758	0.316142	1.377586	0.906406	0.917765	1.512737	1.676019
After #1 Blade	Tab 6	2						
After	Phase	292	22	258	236	243	224	224
After	Mag	0.018758	0.316142	0.49905	0.344356	0.296037	0.809984	1.126468
#1 Blade	Tab 8	9						
After	Phase	13	23	309	262	258	243	235
After	Mag	0.533438	2.129428	0.184701	0.200956	0.701209	1.832715	2.474549
#1 Blade	P/L	12						
After	Phase	165	131	173	143	133	165	154
After	Mag	0.487429	0.252874	0.423921	0.609848	0.507623	0.697093	0.610873
#1 Blade	Wt	1017						
Pred	Phase	222	88	222	166	69	179	193
Pred	Mag	0.040318	0.043536	0.206619	0.200269	0.213387	0.180247	0.15668
Vib	Phase	292	22	93	26	98	124	114
۸ib	Mag	0.018759	0.316144	0.306206	0.5631	0.65862	0.573725	0.710215
Flight #	12	FPG100	Hover Lat	60K Vert	80 K Vert	00 K Vert	20 K Vert	40 K Vert 0.710215

After	Phase	135	73	252	253		247	243
After	Mag	0.102178	0.258373	3.103997	3.487614	3.148081	3.329703	4.407455
After #1 Blade	Tab 4	2						
After	Phase	135	23	263	244	251	244	244
After	Mag	0.102178	0.258373	1.501677	1.268225	1.384616	1.714059	2.046888
After #1 Blade	Tab 6	2						
After	Phase	135	23	242	231	228	229	526
After	Mag	0.102178	0.258373	0.66287	0.728561	0.881825	0.995098	1.50512
#1 Blade	Tab 8	2						
After	Phase	56	26	258	239	241	244	235
After	Mag	0.489469	2.111916	0.263072	0.56269	1.232227	2.034071	2.85528
After #1 Blade	P/L	12						
After	Phase	320	18	64	80	91	93	110
After	Mag	0.412218	0.559919	0.492153	0.475503	0.551746	0.580824	0.77154
#1 Blade	Wt	-1017						
Pred	Phase	226	107	319	220	176	28	249
Pred	Mag	0.038712	0.054741	0.132165	0.031991	0.037732	0.05673	0.065442
Vib	Phase	135	73	134	140	147	143	146
Vib	Mag	0.102177	0.258375	0.268254	0.431669	0.486692	0.479786	0.627742
Flight #	13	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	185	233	222		528	260	258
After	Mag	0.151412	0.123408	3.291134	3.772933	3.298029	3.475488	4.529297
After #1 Blade	Tab 4	2						
After	Phase	185	233	272	268	273	897	274
After	Mag	0.151412	0.123408	1.754667	1.543995	1.624461	1.891171	2.358995
After #1 Blade	Tab 6	2						
After	Phase	185	233	897	272	292	272	127
After	Mag	0.151412	0.123408	0.863193	0.968048	69896.0	1.105105	1.599429
After #1 Blade	Tab 8	9						
After	Phase	70	89	290	283	897	764	258
After	Mag	0.383416	1.739173	0.552498	0.905709	1.391812	2.182367	2.902509
After #1 Blade	P/L	12						
After	Phase	168	183	223	231	232	262	297
After	Mag	0.642475	0.532874	0.471448	0.405159	0.420634	0.357648	0.603728
#1 Blade	Wt	1017						
Pred	Phase	164	299	102	358	129	33	325
Pred	Mag	0.029644	0.072491	0.00489	0.10971	0.059339	0.057369	0.067668
۸ib	Phase	185	233	310	323	341	349	343
۸ib	Mag	0.151411	0.123406	0.090014	0.205333	0.145414	0.313365	0.556559
Flight #	14	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	22	33	256	259	258	252	247
After	Mag	0.159404	0.395228	2.922762	3.366004	2.663455	3.09663	4.362711
After #1 Blade	Tab 4	2						
After	Phase	22	33	274	261	278	253	253
After	Mag	0.159404	0.395228	1.383424	1.124446	0.995378	1.474958	2.023356
After #1 Blade	Tab 6	2						
After	Phase	22	88	569	797	127	242	238
After	Mag	0.159404	0.395228	0.489416	0.541351	0.330567	0.705713	1.394543
After #1 Blade	Tab 8	9						
After	Phase	4۷	23	326	282	270	251	241
After	Mag	0.689722	2.228934	0.258957	0.460454	0.753733	1.789977	2.77427
After #1 Blade	P/L	12						
After	Phase	148	114	171	163	124	164	194
After	Mag	0.389294	0.314081	0.327047	0.384779	0.367592	0.436091	0.499519
#1 Blade	W	1017						
Pred	Phase	216	80	258	224	23	148	225
Pred	Mag	0.132313	0.033657	0.084023	0.09342	0.246967	0.064539	0.251832
Vib	Phase	22	33	75	81	72	66	131
Vib	Mag	0.159404	0.395231	0.314577	0.311538	0.62077	0.421864	0.34276
Flight #	15	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	192	322	272	281	295	289	268
After	Mag	0.028967	0.047861	2.054993	2.423569	1.652357	1.640317	2.329504
After #1 Blade	Tab 4	2						
After	Phase	192	322	325	348	9	698	346
	Mag	0.028967	0.047861	1.052624	0.95237	1.420551	1.054603	1.077247
After #1 Blade	Tab 6	2						
After	Phase	192	322	21	20	31	33	59
After	Mag	0.028967	0.047861	0.81349	1.094652	1.494346	1.385235	1.023949
After #1 Blade	Tab 8	9						
After	Phase	195	239	92	61	62	64	61
After	Mag	0.559692	1.839456	1.69225	2.269961	3.45886	4.360773	5.261899
After #1 Blade	P/L	-12						
After	Phase	165	171	62	22	23	22	23
After	Mag	0.524522	0.415192	0.94613	1.266613	1.767245	1.846837	1.93551
#1 Blade	Wt	1017						
Pred	Phase	202	88	222	192	41	107	178
Pred	Mag	0.231616	0.182607	0.316962	0.239062	0.368912	0.104699	0.418802
Vib	Phase	192	322	52	47	49	25	24
Vib	Mag	0.028967	0.047862	1.377877	1.679968	2.238233	2.293396	2.39225
Flight #	16	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

er	se	5	က	Q	4	5	O.	က
After	Pha		2 293		1 264	1 262	5 260	5 253
After	Mag	996260'0	0.372592	2.696789	2.939101	2.356474	2.360142	2.680325
After #1 Blade	Tab 4	9						
After	Phase	302	293	284	284	298	280	302
After	Mag	0.092966	0.372592	1.233813	0.755104	0.812423	0.80715	0.599606
After #1 Blade	Tab 6	9						
After	Phase	302	293	303	330	345	357	53
After	Mag	0.092966	0.372592	0.364411	0.316432	0.251614	0.240956	0.3271
#1 Blade	Tab 8	2						
After	Phase	9	47	2	351	296	569	247
After	Mag	0.565322	1.680376	0.425864	0.447284	0.541152	1.076764	1.063117
After #1 Blade	P/L	12						
After	Phase	171	221	115	92	87	78	71
After	Mag	0.432903	0.414249	0.262782	0.494193	0.571461	0.752199	1.397944
#1 Blade	Wt	1017						
Pred	Phase	100	62	258	341	310	298	100
Pred	Mag	0.089895	0.087192	0.152849	0.05944	0.053318	0.111113	0.162683
Vib	Phase	302	293	26	09	64	64	29
Vib	Mag	0.092967	0.37259	0.567993	0.793623	0.956517	1.146847	1.842375
Flight #	17	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

	45			_		_		_
After	Phase	243	39	242	244	237	237	232
After	Mag	0.014753	0.276313	3.314815	3.712291	3.373827	3.633725	4.723119
After #1 Blade	Tab 4	9						
After	Phase	243	33	243	225	226	227	229
After	Mag	0.014753	0.276313	1.655006	1.629651	1.659238	2.0928	2.38808
#1 Blade	Tab 6	9						
After	Phase	243	33	215	208	203	209	211
After	Mag	0.014753	0.276313	1.034628	1.209916	1.396547	1.520253	2.011586
After #1 Blade	Tab 8	2						
After	Phase	14	22	201	208	217	229	224
After	Mag	0.521332	2.125537	0.672668	1.022665	1.614575	2.403988	3.264288
After #1 Blade	Ρ⁄L	12						
After	Phase	341	6	128	139	137	140	141
After	Mag	0.497093	0.68027	0.578397	0.701621	0.970153	0.923527	1.217888
#1 Blade	Wt	-1017						
Pred	Phase	297	25	329	194	134	300	343
Pred	Mag	0.088017	0.088382	0.133241	0.186699	0.203814	0.093986	162 0.171415
۸ib	Phase	243	36	165	164	161	164	162
Vib	Mag	0.014752	0.276315	0.787207	0.981633	1.166197	1.104326	1.265135
Flight #	18	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

_		_	_	_				_
After	Phase			254			727	249
After	Mag	0.105433	0.064069	3.90171	4.498195	4.069109	4.25884	5.40823
After #1 Blade	Tab 4	2						
After	Phase	164	342	263	251	528	252	256
After	Mag	0.105433	0.064069	2.307009	2.264174	2.327366	2.638302	3.09081
After #1 Blade	Tab 6	2						
After	Phase	164	342	254	247	250	248	248
After	Mag	0.105433	0.064068	1.454674	1.693232	1.730929	1.864044	2.418942
After #1 Blade	Tab 8	2						
After	Phase	23	99	260	252	254	251	247
After	Mag	0.444271	1.881951	1.068535	1.554797	2.136197	2.953173	3.799389
After #1 Blade	P/L	12						
After	Phase	163	172	230	224	232	231	241
After	Mag	0.604825	0.399274	1.115787	1.31363	1.272377	1.256579	1.348435
#1 Blade	Wt	1017						
Pred	Phase	164	345	28	110	170	134	99
Pred	Mag	0.105433	0.064069	0.151942	0.130403	0.027601	0.088086	0.170182
Vib	Phase	164	345	243	234	241	238	244
Vib	Mag	0.105432	0.064069	0.680677	0.892178	0.813141	0.812045	0.894919
Flight #	19	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

After	Phase	170		260	597	597		261
After	Mag	0.166541	0.131768	3.19789	3.765117	3.434278	3.480526	4.554678
After #1 Blade	Tab 4	2						
After	Phase	170	508	279	276	283	274	280
	Mag	0.166541	0.131768	1.714221	1.569091	1.850408	1.927833	2.470647
After #1 Blade	Tab 6	2						
After	Phase	170	209	281	285	284	282	280
	Mag	0.166541	0.131768	0.817962	1.018585	1.18193	1.161919	1.703414
After #1 Blade	Tab 8	9						
After	Phase	56	09	309	596	280	569	264
After	Mag	0.38668	1.748368	0.594251	0.996388	1.595395	2.204894	2.937574
After #1 Blade	Ρ⁄L	12						
After	Phase	165	179	238	597	217	167	311
After	Mag	0.66482	0.57336	0.306404	0.333571	0.517838	0.414505	0.823055
#1 Blade	W	1017						
Pred	Phase	28	319	126	322	310	62	18
Pred	Mag	0.034084	0.054673	0.101851	0.085991	0.118731	0.077926	0.074918
Vib	Phase	170	209	358	340	334	349	343
Vib	Mag	0.16654	0.131765	0.243486	0.412842	0.512283	0.511324	0.836586
Flight #	20	FPG100	Hover Lat	60K Vert	80 K Vert	100 K Vert	120 K Vert	140 K Vert

Appendix E: UH-60 Matlab Code

Note: The Matlab codes contained in this appendix were each used to perform one or more specific functions in the course of this research. There are several instances where parts of the code have been commented out with the % symbol. In order to reproduce all of the analysis of this thesis, some lines of code may need to be un-commented and other lines commented out.

```
% Capt Nathan A Miller
% This program creates MAT data files from imported Excel database
% Ensure that the two databases are imported into matlab prior to
running
function Excel to Mat
qlobal data
global data2
clc
n = length(data2(:,1));
for j=1:n
% Read Vibration Magnitude and Phase as well as prediction magnitude
  and phase from Excel File and assign to data matrix
UH60VIBES(j,1) = data(2+(j-1)*13,2);
UH60VIBES(j,2) = data(2+(j-1)*13,3);
UH60VIBES(j,3) = data(2+(j-1)*13,4);
UH60VIBES(j,4) = data(2+(j-1)*13,5);
UH60VIBES(j,5) = data(3+(j-1)*13,2);
UH60VIBES(j,6) = data(3+(j-1)*13,3);
UH60VIBES(j,7) = data(3+(j-1)*13,4);
UH60VIBES(j,8) = data(3+(j-1)*13,5);
UH60VIBES(j,9) = data(4+(j-1)*13,2);
UH60VIBES(j,10) = data(4+(j-1)*13,3);
UH60VIBES(j,11) = data(4+(j-1)*13,4);
UH60VIBES(j,12) = data(4+(j-1)*13,5);
UH60VIBES(j,13) = data(8+(j-1)*13,2);
UH60VIBES(j,14) = data(8+(j-1)*13,3);
UH60VIBES(j,15) = data(8+(j-1)*13,4);
UH60VIBES(j,16) = data(8+(j-1)*13,5);
UH60VIBES(j,17) = data(5+(j-1)*13,2);
UH60VIBES(j,18) = data(5+(j-1)*13,3);
UH60VIBES(j,19) = data(5+(j-1)*13,4);
UH60VIBES(j,20) = data(5+(j-1)*13,5);
UH60VIBES(j,21) = data(9+(j-1)*13,2);
UH60VIBES(j,22) = data(9+(j-1)*13,3);
UH60VIBES(j,23) = data(9+(j-1)*13,4);
UH60VIBES(j,24) = data(9+(j-1)*13,5);
UH60VIBES(j,25) = data(6+(j-1)*13,2);
UH60VIBES(j,26) = data(6+(j-1)*13,3);
UH60VIBES(j,27) = data(6+(j-1)*13,4);
UH60VIBES(j,28) = data(6+(j-1)*13,5);
```

```
UH60VIBES(j,29) = data(10+(j-1)*13,2);
UH60VIBES(j,30) = data(10+(j-1)*13,3);
UH60VIBES(j,31) = data(10+(j-1)*13,4);
UH60VIBES(j,32) = data(10+(j-1)*13,5);
UH60VIBES(j,33) = data(7+(j-1)*13,2);
UH60VIBES(j,34) = data(7+(j-1)*13,3);
UH60VIBES(j,35) = data(7+(j-1)*13,4);
UH60VIBES(j,36) = data(7+(j-1)*13,5);
end
save UH60VIBES.mat UH60VIBES
UH60_VMEP_Adjustments = zeros(n,12);
for j=1:n
            for k=1:12
            UH60\_VMEP\_Adjustments(j,k) = data2(j,k+1);
end
save UH60_VMEP_Adjustments.mat UH60_VMEP_Adjustments
UH60\_Coeff\_Data = zeros(n, 57);
for j=1:n
            UH60_Coeff_Data(j,1)=data(2+(j-1)*13,6);
            UH60 Coeff Data(j,20)=data(2+(j-1)*13,9);
                                                                                                                                                          % Records manual
adiustment
            UH60\_Coeff\_Data(j,39)=data(2+(j-1)*13,12); % that produces delta
vibes
            for k=1:3
UH60\_Coeff\_Data(j,[2\ 3]+(k-1)*19) = data(2+(j-1)*13,[7\ 8]+(k-1)*3); % FPG100(A-B)
UH60\_Coeff\_Data(j,[4 5]+(k-1)*19) = data(3+(j-1)*13,[7 8]+(k-1)*3);
                                                                                                                                                                                   % 0 Kts(A-B)
UH60_Coeff_Data(j,[6 7]+(k-1)*19) = data(4+(j-1)*13,[7 8]+(k-1)*3);
                                                                                                                                                                                   % 80 Kts(A-B)
UH60 Coeff Data(j,[8 9]+(k-1)*19) = data(8+(j-1)*13,[7 8]+(k-1)*3);
                                                                                                                                                                                % 80 Kts(A+B)
 \label{eq:uh60_coeff_data} $$ UH60_Coeff_Data(j,[10\ 11]+(k-1)*19) = data(5+(j-1)*13,[7\ 8]+(k-1)*3); \ \$\ 120\ Kts(A-B) $$ $$ If $(k-1)$ is a sum of the context of the
UH60\_Coeff\_Data(j,[12\ 13]+(k-1)*19) = data(9+(j-1)*13,[7\ 8]+(k-1)*3); % 120 Kts(A+B)
UH60\_Coeff\_Data(j,[14\ 15]+(k-1)*19) = data(6+(j-1)*13,[7\ 8]+(k-1)*3); % 145\ Kts(A-B)
 \label{eq:uh60_coeff_data} $$ UH60_Coeff_Data(j,[16\ 17]+(k-1)*19) = data(10+(j-1)*13,[7\ 8]+(k-1)*3); \ \$\ 145\ Kts(A+B) $$ $$ If $(k-1)$ is a sum of the context of th
UH60\_Coeff\_Data(j,[18\ 19]+(k-1)*19) = data(7+(j-1)*13,[7\ 8]+(k-1)*3); % 0 Kts(A+B) Non
AVA quantity
            end
            UH60 Coeff Data(j,[58 59]) = data(2+(j-1)*13,[15 16]);
            UH60\_Coeff\_Data(j,[60 61]) = data(3+(j-1)*13,[15 16]);
            UH60\_Coeff\_Data(j,[62 63]) = data(4+(j-1)*13,[15 16]);
            UH60\_Coeff\_Data(j,[64 65]) = data(8+(j-1)*13,[15 16]);
            UH60 Coeff Data(j,[66 67]) = data(5+(j-1)*13,[15 16]);
            UH60\_Coeff\_Data(j,[68 69]) = data(9+(j-1)*13,[15 16]);
            UH60\_Coeff\_Data(j,[70\ 71]) = data(6+(j-1)*13,[15\ 16]);
            UH60 Coeff Data(j,[72 73]) = data(10+(j-1)*13,[15 16]);
            UH60\_Coeff\_Data(j,[74\ 75]) = data(7+(j-1)*13,[15\ 16]);
save UH60_Coeff_Data.mat UH60_Coeff_Data
```

```
% Capt Nathan A Miller
% Thesis work
% This program loads vibe data and calculates an AVA adjustment matrix
function Vibs2AVA ADJ
load UH60VIBES.mat
n = length(UH60VIBES(:,1));
for j=1:n
mag = UH60VIBES(j,[1 5 9 13 17 21 25 29])';
phase = UH60VIBES(j,[2 6 10 14 18 22 26 30])';
vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
pmag = UH60VIBES(j,[3 7 11 15 19 23 27 31])';
pphase = UH60VIBES(j,[4 8 12 16 20 24 28 32])';
pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 ) );
delvib = -vibsCmplx + pvibsCmplx;
adj(j) = LinearUH60( delvib );
end
for k=1:n
       magnitude(k,:) = adj(k).mag';
       Phase(k,:) = adj(k).phase';
end
AVAadj.mag = magnitude;
AVAadj.phase = Phase;
save AVAadj.mat AVAadj
% Capt Miller
% This function converts a complex vibset into an adjustment set based
%on the AVA sensitivity coefficients.
function adj = LinearUH60( vibsCmplx )
% Matrix of coefficient magnitudes
mag = [0.00993, 0.0, 0.0; % FPG100 (A - B)]
                           %
       0.0, 0.0460, 0.0162;
                                0 kts (A - B)
                           % 80 kts (A - B)
      0.0, 0.0289, 0.0105;
      0.0, 0.0410, 0.0296;
                           % 80 kts (A + B)
      0.0, 0.0369, 0.0113;
                           % 120 kts (A - B)
      0.0, 0.0516, 0.0413; % 120 kts (A + B)
      0.0, 0.0460, 0.0180;
                             % 145 kts (A - B)
      0.0, 0.0660, 0.0530];
                             % 145 kts (A + B)
% Matrix of coefficient phases (deg)
phase = [338.0, 0.0, 0.0; % FPG100 (A - B)]
        0.0, 147.3, 146.7; % 0 kts (A - B) 0.0, 126.7, 122.4; % 80 kts (A - B)
        0.0, 196.2, 196.2; % 80 kts (A + B)
        0.0, 138.0, 136.7; % 120 kts (A - B)
```

```
0.0, 189.6, 191.7; % 120 kts (A + B)
        0.0, 147.0, 139.0; % 145 kts (A - B)
        0.0, 192.7, 192.0]; % 145 kts (A + B)
% Convert the coefficients to complex numbers
A = mag.*(cos(phase*pi/180) + i*sin(phase*pi/180));
% Calculate the adjustments
adjCmplx = A\vibsCmplx;
% Convert the adjustments to magnitude and phase
adj.mag = abs( adjCmplx );
adj.phase = angle( adjCmplx )*180/pi;
% Capt Nathan A Miller
% Converts VMEP adjustments into magnitude and phase of adjustments.
function VMEP_2_MagPhase
load UH60 VMEP Adjustments.mat
n = length(UH60_VMEP_Adjustments(:,1));
a=UH60 VMEP Adjustments;
clear UH60_VMEP_Adjustments
for j=1:n
                   Yellow
                         Blue
                                 Red
   adjcmplx(j,1) = +a(j,1)-i*a(j,4)-a(j,7)+i*a(j,10); % Weight Adj
   adjcmplx(j,2) = +a(j,2)-i*a(j,5)-a(j,8)+i*a(j,11); % P/L Adj
   adjcmplx(j,3) = +a(j,3)-i*a(j,6)-a(j,9)+i*a(j,12); % Tab Adj
VMEPadj.mag=abs(adjcmplx);
VMEPadj.phase = angle(adjcmplx)*180/pi;
save VMEPadj.mat VMEPadj
% Capt Miller
% This program converts the coefficient matrix data into actual
% coefficient matrices. The program loads the raw vibe data from
% UH60Vibes.mat and computes a delta vibe from the predicted vibe
values
% stored in UH60_Coeff_Data.mat. The coefficient matrix is computed
% column by column. Once computed, the coefficient matrix operates on
% vibe set to produce a linear adjustment set.
function VMEP_Coefficient_Matrix
load UH60VIBES.mat
load UH60_Coeff_Data.mat
n=length(UH60VIBES(:,1))
for j=1:n
```

```
wt = UH60_Coeff_Data(j,1);
       pl = UH60_Coeff_Data(j,20);
       tab = UH60_Coeff_Data(j,39);
     for k=1:9 % loops over the 8 flight conditons, FPG100(A-B),
Hover(A-B),
       % 80Kts(A-B)(A+B), 120Kts(A-B)(A+B), 145Kts(A-B)(A+B) and
finally
       % the VMEP specific Hover(A+B)condition as #9
       vibmag=UH60VIBES(j,1+4*(k-1));
       vibphase=UH60VIBES(i,2+4*(k-1));
       vibcmplx=vibmag*(cos( vibphase*pi/180 ) + ...
           i*sin( vibphase*pi/180 ) );
       pvibwtmag=UH60_Coeff_Data(j,2+2*(k-1));
       pvibwtphase=UH60_Coeff_Data(j,3+2*(k-1));
       pvibwtcmplx=pvibwtmag*(cos( pvibwtphase*pi/180 ) + ...
           i*sin( pvibwtphase*pi/180 ) );
       pvibplmag=UH60 Coeff Data(j,21+2*(k-1));
       pvibplphase=UH60_Coeff_Data(j,22+2*(k-1));
       pvibplcmplx=pvibplmag*(cos( pvibplphase*pi/180 ) + ...
           i*sin( pvibplphase*pi/180 ) );
       pvibtabmag=UH60_Coeff_Data(j,40+2*(k-1));
       pvibtabphase=UH60_Coeff_Data(j,41+2*(k-1));
       pvibtabcmplx=pvibtabmaq*(cos( pvibtabphase*pi/180 ) + ...
           i*sin( pvibtabphase*pi/180 ) );
       dvibwt=pvibwtcmplx-vibcmplx;
       dvibpl=pvibplcmplx-vibcmplx;
       dvibtab=pvibtabcmplx-vibcmplx;
       A(k,1)=dvibwt/wt;
       A(k,2)=dvibpl/pl;
       A(k,3)=dvibtab/tab;
   end
   Coeff{j}=A;
end
% Capt Miller
% This program creates polar plots of the ad hoc coefficient
% adjustments as well as the VMEP and AVA adjustments. It also
% calculates the maximum difference between the VMEP adjustments and
% the ad hoc adjustments.
clear;clc;close all;
load Coeff.mat
load UH60VIBES.mat
load VMEPadj.mat
% Runs the Least Squares Coefficient function to generate the LSC
% matrix from the Coeff cell.
[LSC, standard]=Least_Squares_Coeff(Coeff);
r=0
```

E-5

```
for z=1:5
   r=r+1;
vib_num=z;
b=1 ;% Sets beginning Coefficient Matrix to consider
e=length(Coeff); % Sets ending Coefficient Matrix to consider
                    %(set to length(Coeff) to do all)
    Convert Pre-Adjustment vibe data into complex array
for j=1:length(Coeff)
    mag = UH60VIBES(j,[1 5 9 13 17 21 25 29 33])';
    phase = UH60VIBES(j,[2 6 10 14 18 22 26 30 34])';
    vibsCmplx = mag.*(cos(phase*pi/180) + i*sin(phase*pi/180));
    pmag = UH60VIBES(j,[3 7 11 15 19 23 27 31 35])';
    pphase = UH60VIBES(j,[4 8 12 16 20 24 28 32 36])';
   pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
    vibset(:,j) = -vibsCmplx+pvibsCmplx;
end
% Select discrete vibe set to use for comparison
discrete_vib=vibset(:,vib_num);
for j=1:length(Coeff)
    adj(:,j)=Coeff\{j\}\vibset(:,j);
    % adj(:,j)=Coeff{j}\discrete_vib;
     Cmag(:,j) = abs(adj(:,j));
                                       % Calculate real-number Mag and
     Cphase(:,j) = (angle(adj(:,j)))*180/pi; % Phase values for later
end
VMEP2AVA.mag = Cmag';
                           % Stores Mag and Phase data to disk
VMEP2AVA.phase = Cphase';
save VMEP2AVA.mat VMEP2AVA
    % Calculate the Least Squares Method adjustment
A = LSC.mag.*(cos( LSC.phase*pi/180 ) + i*sin( LSC.phase*pi/180 ) );
LS_adj=A\discrete_vib;
AVA_adj=LinearUH60( discrete_vib(1:8) - pvibsCmplx(1:8));
%AVA_adj=LinearUH60( discrete_vib(1:8));
VMEPmag=VMEPadj.mag(vib_num,:);
VMEPphase=VMEPadj.phase(vib_num,:);
   Determine the max magnitude so we can normalize our adjustments for
   use in plotting on a single graph
for k=1:3
    M=max(VMEPmag(k), abs(LS_adj(k)));
    Max(k)=max(M,AVA_adj.mag(k));
end
    subplot(2,3,r)
    polar(0,1,'.w')
    hold;
    % Plot PCR adjustments
```

```
polar(VMEPphase(1)*pi/180,VMEPmag(1)/Max(1),'*r')
   polar(angle(adj(1,z)), abs(adj(1,z))/Max(1), 'ro')
    polar(angle(LS_adj(1)),abs(LS_adj(1))/Max(1),'sr')
    %polar(AVA_adj.phase(1)*pi/180,AVA_adj.mag(1)/Max(1), 'or')
    % Plot Tab adjustments
   polar(VMEPphase(2)*pi/180,VMEPmag(2)/Max(2),'*k')
   polar(angle(adj(2,z)),abs(adj(2,z))/Max(2),'ok')
    polar(angle(LS_adj(2)),abs(LS_adj(2))/Max(2),'sk')
    polar(AVA_adj.phase(2)*pi/180, AVA_adj.mag(2)/Max(2), 'ok')
     % Plot Tab adjustments
   polar(VMEPphase(3)*pi/180,VMEPmag(3)/Max(3),'*b')
   polar(angle(adj(3,z)), abs(adj(3,z))/Max(3), 'ob')
્ર
    polar(angle(LS_adj(3)),abs(LS_adj(3))/Max(3),'sb')
    polar(AVA_adj.phase(3)*pi/180, AVA_adj.mag(3)/Max(3), 'ob')
   title('Red-wt, Black-PCR, Blue-Tab')
용
    figure(2)
응
    subplot(1,3,1)
    polar(angle(adj(1,b:e)),abs(adj(1,b:e)),'xr')
응
    title('Weight')
응
    subplot(1,3,2)
응
    polar(angle(adj(2,b:e)),abs(adj(2,b:e)),'xr')
    title('PCR')
્ટ
કૃ
    subplot(1,3,3)
응응
    polar(angle(adj(3,b:e)),abs(adj(3,b:e)),'xr')
    title('Trim Tab')
end
   VMEPcplx = VMEPadj.mag.*(cos(VMEPadj.phase*pi/180) + ...
       i*sin(VMEPadj.phase*pi/180));
    for j=1:20
       diff(j,:)=abs(VMEPcplx(j,:) - (A\vibset(:,j)).')
   end
   max(diff)
   figure(2)
     polar(AVA adj.phase(2)*pi/180,AVA adj.mag(2),'or')
     hold on
     polar(VMEPphase(2)*pi/180,VMEPmag(2),'*r')
% Capt Miller
% This function creates a single coefficient matrix from N coefficient
% matrices by summing the squares of the N coefficient matrix
components
% and then taking the square root. It also calculates the standard
% deviation of all ad hoc coefficients from their mean value.
function [LSC, standard]=Least_Squares_Coeff(Coeff)
numcoeff=length(Coeff);
numrows=length(Coeff{1}(:,1));
numcollumns=length(Coeff{1}(1,:));
```

E-7

```
C=zeros(numrows,numcollumns);
for j=1:numcoeff
   A.mag=abs(Coeff{j});
   A.phase=angle(Coeff{j});
   C=C+(A.mag.^2).*(cos( A.phase ) + i*sin( A.phase ) );
LSC.mag=sqrt(abs(C)/numcoeff);
LSC.phase=angle(C)*180/pi;
for j=1:numrows
   for k=1:numcollumns
       if LSC.phase(j,k) < 0
           LSC.phase(j,k) = LSC.phase(j,k)+360;
       end
   end
end
LSCcmplx = LSC.mag.*(cos(LSC.phase*pi/180)+i*sin(LSC.phase*pi/180));
for j=1:numcoeff
   diff{j}=abs(Coeff{j}-LSCcmplx);
end
for j=1:numrows
   for k=1:numcollumns
       for l=1:numcoeff
           temp(1)=diff\{1\}(j,k);
       standard(j,k) = std(temp);
   end
end
% Capt Miller
% This program will maesure the difference between the VMEP adjustment
and
% the ad hoc adjustment for each flight. Intent is to determine
% if the minus zero produces any differences in adjustments.
clear;clc;close all;
load Coeff.mat
load UH60VIBES.mat
load UH60 Coeff Data.mat
load VMEPadj.mat
[LSC, standard]=Least_Squares_Coeff(Coeff)
for j=1:n
   mag = UH60VIBES(j,[1 5 9 13 17 21 25 29 33])';
   phase = UH60VIBES(j,[2 6 10 14 18 22 26 30 34])';
```

E-8

```
vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
   pmag = UH60VIBES(j,[3 7 11 15 19 23 27 31 35])';
   pphase = UH60VIBES(j,[4 8 12 16 20 24 28 32 36])';
   pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
);
   vibset(:,j) = -vibsCmplx+pvibsCmplx;
end
VMEPcplx = VMEPadj.mag.*(cos(VMEPadj.phase*pi/180) + ...
    i*sin(VMEPadj.phase*pi/180));
A = LSC.mag.*(cos(LSC.phase*pi/180) + i*sin(LSC.phase*pi/180));
for j=1:10
    tmp{2*j-1,:}=Coeff{2*j};% tmp(odd) = A(even)
    tmp{2*j,:}=Coeff{2*j-1};% tmp(even) = A(odd)
%clear Coeff; % Do not rem out if you wish to swap around
%Coeff=tmp;
               % ad hoc matrices
for j=1:n
 %adj(j,:)=A\vibset(:,j); % This one for plotting RMS ad hoc
adj(j,:)=Coeff{j}\vibset(:,j);%This one for plotting individual ad
hocs
end
for type=1:3
    %figure(type)
    subplot(1,3,type)
polar(angle(adj(1:n,type)),abs(adj(1:n,type)),'ko')
polar(angle(VMEPcplx(1:n,type)),abs(VMEPcplx(1:n,type)),'k+')
end
for j=1:20
          diff(j,:)=abs(VMEPcplx(j,:) - adj(j,:));
    end
diff
max(diff)
%figure(1)
subplot(1,3,1)
title('Weight')
%legend('Ad Hoc Adjustment','Real Adjustment')
%figure(2)
subplot(1,3,2)
title('Pitch Link')
%legend('Ad Hoc Adjustment','Real Adjustment')
%figure(3)
subplot(1,3,3)
title('Trim Tab')
%legend('Ad Hoc Adjustment','Real Adjustment')
```

```
% Capt Nathan A Miller
% Determining difference in AVA and VMEP methods using Histograms.
clear; clc;
load AVAadj.mat
load VMEPadj.mat
AVAcomplex = AVAadj.mag.*(cos( AVAadj.phase*pi/180 ) +...
    i*sin( AVAadj.phase*pi/180 ) );
VMEPcomplex = VMEPadj.mag.*(cos( VMEPadj.phase*pi/180 ) +...
    i*sin( VMEPadj.phase*pi/180 ) );
Magnitude_diff = abs(AVAcomplex - VMEPcomplex);
Rel_mag_diff = Magnitude_diff./AVAadj.mag;
for i=1:20
    if abs(AVAcomplex(i,2)) < 1/2
       % if abs(VMEPcomplex(i,2)) < 113/2
        Rel_mag_diff(i,2)=0;
        abs(AVAcomplex(i,2))
        abs(VMEPcomplex(i,2))
        %end
    end
    if abs(AVAcomplex(i,3)) < 2/2
       % if abs(VMEPcomplex(i,3)) < 0.5/2
         Rel_mag_diff(i,3)=0;
        abs(AVAcomplex(i,3))
        abs(VMEPcomplex(i,3))
        %end
    end
end
X = ([0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9]+0.5)/10;
for i=1:2
      [n(i,:),xout(i,:)]=hist(Rel_mag_diff(:,i+1),X);
      subplot(1,2,i);
      bar(xout(i,:)*100,n(i,:)/0.2,'k');
      AXIS([0 100 0 50])
      ylabel('Percentage of Total Flights Sampled')
subplot(1,2,1)
title('Pitch Link')
subplot(1,2,2)
title('Trim Tab')
text(-60,-3,'Percent Difference of PC-GBS Adjustments from AVA
Algorithm Adjustments')
```

E-10

```
% Capt Miller Thesis
% This is a test program to determine if any mistakes were made
% during data entry. Any errors in vib data entry will appear as gross
% differences in the plotted ad hoc coefficients.
clear all; clf; clc; close all
load Coeff.mat
[LSC, standard]=Least_Squares_Coeff(Coeff);
[LSCgood, standardgood]=Least_Squares_Coeff(Coeff(1:5));
[LSCexd, standardexd]=Least_Squares_Coeff(Coeff(15:20));
b=1;
e=length(Coeff);
FLG=-1 %positive for single fig
state=6;
for h=1:9
for j=b:e
    value(h,j+1-b,:)=Coeff\{j\}(h,:);
end
latvalue = value([1 2 3 5 7],:,:);
vertvalue = value([9 4 6 8],:,:);
for h=1:9
   \max(h) = \max(abs(value(h,:,1)));
    \max 2(h) = \max(abs(value(h,:,2)));
    \max 3(h) = \max(abs(value(h,:,3)));
end
for h=1:5
    latmax1(h) = max(abs(latvalue(h,:,1)));
    latmax2(h) = max(abs(latvalue(h,:,2)));
    latmax3(h) = max(abs(latvalue(h,:,3)));
end
for h=1:4
    vertmax1(h)=max(abs(vertvalue(h,:,1)));
    vertmax2(h)=max(abs(vertvalue(h,:,2)));
    vertmax3(h)=max(abs(vertvalue(h,:,3)));
end
for h=1:9
%figure(h)
subplot(3,3,h)
%polar(angle(value(h,:,1)),abs(value(h,:,1))/max1(h),'bx')
%hold on
polar(angle(value(h,:,n)),abs(value(h,:,n)),'rx')
%figure(2)
%subplot(3,3,h)
%polar(angle(value(h,:,2)),abs(value(h,:,2))/max2(h),'rx')
%figure(3)
%subplot(3,3,h)
%polar(angle(value(h,:,3)),abs(value(h,:,3))/max3(h),'gx')
 subplot(3,3,1)
title('FPG100 A-B')
 subplot(3,3,2)
title('Hover A-B')
```

```
subplot(3,3,3)
title('80 Kts A-B')
 subplot(3,3,4)
title('80 Kts A+B')
 subplot(3,3,5)
title('120 Kts A-B')
 subplot(3,3,6)
title('120 Kts A+B')
 subplot(3,3,7)
title('145 Kts A-B')
 subplot(3,3,8)
title('145 Kts A+B')
 subplot(3,3,9)
title('Hover A+B')
if FLG>0
figure(1)
clf;
polar(angle(value(state,:,n)),abs(value(state,:,n)),'rx')
figure(2)
for i=1:5
    temp = max(latmax1(i)*10,latmax2(i));
   maxval = max(temp,latmax3(i));
                 % Each subplot is for a different lateral regime
 subplot(2,3,i)
polar(0,maxval,'w.')
hold on
polar(angle(latvalue(i,:,1)),abs(latvalue(i,:,1))*10,'kx')
polar(angle(latvalue(i,:,2)),abs(latvalue(i,:,2)),'kd')
polar(angle(latvalue(i,:,3)),abs(latvalue(i,:,3)),'k^')
end
figure(3)
for i=1:4
    temp = max(vertmax1(i), vertmax2(i));
   maxval = max(temp,vertmax3(i));
                % Each subplot is for a different lateral regime
subplot(2,2,i)
polar(0,maxval,'w.')
hold on
888888888888888888888
polar(angle(vertvalue(i,:,2)),abs(vertvalue(i,:,2)),'kd')
polar(angle(vertvalue(i,:,3)),abs(vertvalue(i,:,3)),'k^')
end
abs(LSCexd.mag-LSCgood.mag)./LSCgood.mag*100
figure(4)
i=5
polar(0,.06,'w.')
hold on
polar(angle(latvalue(i,:,1)),abs(latvalue(i,:,1))*10,'kx')
polar(angle(latvalue(i,:,2)),abs(latvalue(i,:,2)),'kd')
polar(angle(latvalue(i,:,3)),abs(latvalue(i,:,3)),'k^')
```

Appendix F: AH-64A Matlab Code

Note: The Matlab codes contained in this appendix were each used to perform one or more specific functions in the course of this research. There are several instances where parts of the code have been commented out with the % symbol. In order to reproduce all of the analysis of this thesis, some lines of code may need to be un-commented and other lines commented out.

```
% Capt Nathan A Miller
% This program creates MAT data files from imported Excel database
% Ensure that the two databases are imported into matlab prior to
running
function Excel to MAT
global data data2
n = length(data2(:,2))-2
% Read Vibration Magnitude and Phase as well as prediction magnitude
% and phase from Excel File and assign to data matrix
AH64A_Vibes = zeros(n, 28);
for j=1:n
    for k=1:7
        AH64A_Vibes(j,1+4*(k-1)) = data(1+k+(j-1)*11,2);
        AH64A Vibes(j, 2+4*(k-1)) = data(1+k+(j-1)*11, 3);
        AH64A\_Vibes(j, 3+4*(k-1)) = data(1+k+(j-1)*11, 4);
        AH64A\_Vibes(j,4+4*(k-1)) = data(1+k+(j-1)*11,5);
    end
end
save AH64A_Vibes.mat AH64A_Vibes
AH64A\_VMEP\_Adjustments = zeros(n,20);
for j=1:n
    for k=1:20
    AH64A VMEP Adjustments(j,k) = data2(j+2,k+1);
end
save AH64A_VMEP_Adjustments.mat AH64A_VMEP_Adjustments
AH64A\_Coeff\_Data = zeros(n,75);
for j=1:n
    AH64A\_Coeff\_Data(j,1)=data(2+(j-1)*11,6);
    AH64A\_Coeff\_Data(j,16)=data(2+(j-1)*11,9); % Records manual adjustment
    AH64A\_Coeff\_Data(j,31)=data(2+(j-1)*11,12); \ \ \ \ \ that \ \ produces \ \ delta \ \ vibes
    AH64A\_Coeff\_Data(j,46)=data(2+(j-1)*11,15);
    AH64A Coeff Data(j,61)=data(2+(j-1)*11,18);
    for k=1:7
        for z=1:5
          AH64A\_Coeff\_Data(j,2*k+15*(z-1)) = data(1+k+(j-1)*11,7+3*(z-1));
          AH64A\_Coeff\_Data(j,2*k+1+15*(z-1))=data(1+k+(j-1)*11,8+3*(z-1));
        end
    end
end
save AH64A Coeff Data.mat AH64A Coeff Data
```

F-1

```
% Capt Nathan A Miller
% Thesis work
% This program loads vibe data and calculates an AVA adjustment matrix
function Vibs2AVA ADJ
load AH64A Vibes.mat
n = length(AH64A_Vibes(:,1));
for j=1:n
mag = AH64A\_Vibes(j,[1 5 9 13 17 21 25])';
phase = AH64A_Vibes(j,[2 6 10 14 18 22 26])';
vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
pmag = AH64A_Vibes(j,[3 7 11 15 19 23 27])';
pphase = AH64A_Vibes(j,[4 8 12 16 20 24 28])';
pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 ) );
delvib = -vibsCmplx + pvibsCmplx;
adj(j) = LinearAH64A( delvib );
end
for k=1:n
       magnitude(k,:) = adj(k).mag';
       Phase(k,:) = adj(k).phase';
end
AVAadj.mag = magnitude;
AVAadj.phase = Phase;
save AVAadj.mat AVAadj
% Capt Nathan A Miller
% Converts VMEP adjustments into magnitude and phase of adjustments.
function VMEP_2_MagPhase
load AH64A_VMEP_Adjustments.mat
n = length(AH64A_VMEP_Adjustments(:,1));
a=AH64A_VMEP_Adjustments;
clear AH64A VMEP Adjustments
for j=1:n
                                     3
            blade # 1
                              2
   adjcmplx(j,1) = +a(j,1)-i*a(j,6)-a(j,11)+i*a(j,16); % Weight Adj
   adjcmplx(j,2) = +a(j,2)-i*a(j,7)-a(j,12)+i*a(j,17); % P/L Adj
   adjcmplx(j,3) = +a(j,3)-i*a(j,8)-a(j,13)+i*a(j,18); % Tab Adj 8
   adjcmplx(j,4) = +a(j,4)-i*a(j,9)-a(j,14)+i*a(j,19); % Tab Adj 6
   adjcmplx(j,5) = +a(j,5)-i*a(j,10)-a(j,15)+i*a(j,20); % Tab Adj 4
end
```

```
VMEPadj.mag=abs(adjcmplx);
VMEPadj.phase = angle(adjcmplx)*180/pi;
save VMEPadj.mat VMEPadj
% Capt Miller
% This program generates plots of the ad hoc adjustments
clear;clc;close all;
load Coeff.mat
load AH64A Vibes.mat
for j=1:length(Coeff)
   mag = AH64A\_Vibes(j,[1 5 9 13 17 21 25])';
   phase = AH64A_Vibes(j,[2 6 10 14 18 22 26])';
   vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
   pmag = AH64A_Vibes(j,[3 7 11 15 19 23 27])';
   pphase = AH64A_Vibes(j,[4 8 12 16 20 24 28])';
   pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
);
   vib(:,j) = vibsCmplx;% - pvibsCmplx;
end
v=vib(:,1)
for j=1:length(Coeff)
   adj(:,j)=Coeff{j}\v;
    magnitude(:,j) = abs(adj(:,j));
    Faze(:,j) = (angle(adj(:,j)))*180/pi;
end
   ava=LinearAH64A( v );
   avaadj=ava.mag.*(cos( ava.phase*pi/180 ) + i*sin( ava.phase*pi/180
) );
VMEP2AVA.mag = magnitude';
VMEP2AVA.phase = Faze';
save VMEP2AVA.mat VMEP2AVA
figure(1)
   if max(abs(ava.mag(1))) > max(abs(adj(1,:)))
   polar(ava.phase(1)*pi/180,ava.mag(1),'*r')
   hold
   polar(angle(adj(1,:)),abs(adj(1,:)))
   else
     polar(angle(adj(1,:)),abs(adj(1,:)))
     polar(ava.phase(1)*pi/180,ava.mag(1),'*r')
   end
```

```
ava.mag
ava.phase
figure(2)
   if max(abs(ava.mag(2))) > max(abs(adj(2,:)))
   polar(ava.phase(2)*pi/180,ava.mag(2),'*r')
   hold
   polar(angle(adj(2,:)),abs(adj(2,:)))
   else
     polar(angle(adj(2,:)),abs(adj(2,:)))
     polar(ava.phase(2)*pi/180,ava.mag(2),'*r')
   end
figure(3)
   if max(abs(ava.mag(3))) > max(abs(adj(3,:)))
   polar(ava.phase(3)*pi/180,ava.mag(3),'*r')
   hold
   polar(angle(adj(3,:)),abs(adj(3,:)))
   else
     polar(angle(adj(3,:)),abs(adj(3,:)))
     polar(ava.phase(3)*pi/180,ava.mag(3),'*r')
   end
figure(4)
   if max(abs(ava.mag(4))) > max(abs(adj(4,:)))
   polar(ava.phase(4)*pi/180,ava.mag(4),'*r')
   hold
   polar(angle(adj(4,:)),abs(adj(4,:)))
   else
     polar(angle(adj(4,:)),abs(adj(4,:)))
     polar(ava.phase(4)*pi/180,ava.mag(4),'*r')
   end
figure(5)
   if max(abs(ava.mag(5))) > max(abs(adj(5,:)))
   polar(ava.phase(5)*pi/180,ava.mag(5),'*r')
   polar(angle(adj(5,:)),abs(adj(5,:)))
   else
     polar(angle(adj(5,:)),abs(adj(5,:)))
     polar(ava.phase(5)*pi/180,ava.mag(5),'*r')
   end
```

F-4

```
% Capt Miller
% This program converts the coefficient matrix data into actual
% coefficient matrices. The program loads the raw vibe data from
% AH64A_Vibes.mat and computes a delta vibe from the predicted vibe
% values stored in AH64A Coeff Data.mat. The coefficient matrix is
% computed column by column. Once computed, the coefficient matrix
% operates on a vibe set to produce a quasi-linear adjustment set.
% This process is repeated for each coefficient data set. The same
% vibe set is always used for comparison.
function VMEP_Coefficient_Matrix
load AH64A_Vibes.mat
load AH64A_Coeff_Data.mat
n=length(AH64A_Vibes(:,1));
for j=1:n
        wt = AH64A_Coeff_Data(j,1);
        pl = AH64A_Coeff_Data(j,16);
        tab8 = AH64A_Coeff_Data(j,31);
        tab6 = AH64A\_Coeff\_Data(j, 46);
        tab4 = AH64A_Coeff_Data(j,61);
    for k=1:7 % loops over the 7 flight conditons, FPG100 through 140 Knots
        vibmag=AH64A Vibes(j,1+4*(k-1));
        vibphase=AH64A_Vibes(j, 2+4*(k-1));
        vibcmplx=vibmag*(cos( vibphase*pi/180 ) + ...
            i*sin( vibphase*pi/180 ) );
        pvibwtmag=AH64A_Coeff_Data(j,2+2*(k-1));
        pvibwtphase=AH64A_Coeff_Data(j,3+2*(k-1));
        pvibwtcmplx=pvibwtmag*(cos( pvibwtphase*pi/180 ) + ...
            i*sin( pvibwtphase*pi/180 ) );
        pvibplmag=AH64A_Coeff_Data(j,17+2*(k-1));
        pvibplphase=AH64A_Coeff_Data(j,18+2*(k-1));
        pvibplcmplx=pvibplmag*(cos( pvibplphase*pi/180 ) + ...
            i*sin( pvibplphase*pi/180 ) );
        pvibtab8mag=AH64A Coeff Data(j,32+2*(k-1));
        pvibtab8phase=AH64A Coeff Data(j,33+2*(k-1));
        pvibtab8cmplx=pvibtab8mag*(cos( pvibtab8phase*pi/180 ) + ...
            i*sin( pvibtab8phase*pi/180 ) );
        pvibtab6mag=AH64A_Coeff_Data(j,47+2*(k-1));
        pvibtab6phase=AH64A_Coeff_Data(j,48+2*(k-1));
        pvibtab6cmplx=pvibtab6mag*(cos( pvibtab6phase*pi/180 ) + ...
            i*sin( pvibtab6phase*pi/180 ) );
        pvibtab4mag=AH64A_Coeff_Data(j,62+2*(k-1));
        pvibtab4phase=AH64A_Coeff_Data(j,63+2*(k-1));
        pvibtab4cmplx=pvibtab4mag*(cos( pvibtab4phase*pi/180 ) + ...
            i*sin( pvibtab4phase*pi/180 ) );
        dvibwt=pvibwtcmplx-vibcmplx;
```

```
dvibpl=pvibplcmplx-vibcmplx;
        dvibtab8=pvibtab8cmplx-vibcmplx;
        dvibtab6=pvibtab6cmplx-vibcmplx;
        dvibtab4=pvibtab4cmplx-vibcmplx;
        A(k,1) = dvibwt/wt;
        A(k,2) = dvibpl/pl;
        A(k,3)=dvibtab8/tab8;
        A(k,4)=dvibtab6/tab6;
        A(k,5) = dvibtab4/tab4;
    end
    Coeff{j}=A;
end
save Coeff.mat Coeff
% Capt Miller Thesis
% This is a test program to determine if any mistakes were made
% during data entry.
clear; clf; clc;
load Coeff.mat
b=1
e=length(Coeff)
n=1
for h=1:7
      for j=b:e
          value(h, j+1-b,:)=Coeff\{j\}(h,:);
      end
end
for h=1:7
   \max(h) = \max(abs(value(h,:,1)));
    \max 2(h) = \max(abs(value(h,:,2)));
    \max 3(h) = \max(abs(value(h,:,3)));
    \max 4(h) = \max(abs(value(h,:,4)));
    \max 5(h) = \max(abs(value(h,:,5)));
end
for h=1:7
%figure(h)
subplot(3,3,h)
%polar(angle(value(h,:,1)),abs(value(h,:,1))/max1(h),'bx')
polar(angle(value(h,:,n)),abs(value(h,:,n)),'rx')
%hold on
%figure(2)
%subplot(3,3,h)
%polar(angle(value(h,:,2)),abs(value(h,:,2))/max2(h),'rx')
%figure(3)
%subplot(3,3,h)
polar(angle(value(h,:,3)),abs(value(h,:,3))/max3(h),'gx')
%polar(angle(value(h,:,4)),abs(value(h,:,4))/max4(h),'mx')
%polar(angle(value(h,:,5)),abs(value(h,:,5))/max5(h),'cx')
```

```
end
subplot(3,3,1)
title('FPG100 Lat')
subplot(3,3,2)
title('Hover Lat')
subplot(3,3,3)
title('60 Kts Vert')
subplot(3,3,4)
title('80 Kts Vert')
subplot(3,3,5)
title('100 Kts Vert')
subplot(3,3,6)
title('120 Kts Vert')
subplot(3,3,7)
title('140 Kts Vert')
%figure(1)
%clf;
%polar(angle(value(4,:,1)),abs(value(4,:,1)),'bx')
% Capt Miller
% Rough plots of coeff matrix results
clear; clc; clf;
load Coeff.mat
load AH64A_Vibes.mat
load VMEPadj.mat
[LSC, standard]=Least_Squares_Coeff(Coeff);
% Runs the Least Squares Coefficient function to
  % generate the LSC matrix from the Coeff cell.
vib num=20
b=1
e=length(Coeff)
for j=1:length(Coeff)
   mag = AH64A \ Vibes(j,[1 5 9 13 17 21 25])';
   phase = AH64A_Vibes(j,[2 6 10 14 18 22 26])';
   vibsCmplx = mag.*(cos(phase*pi/180) + i*sin(phase*pi/180));
   pmag = AH64A\_Vibes(j,[3 7 11 15 19 23 27])';
   pphase = AH64A_Vibes(j,[4 8 12 16 20 24 28])';
   pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
);
   vibset(:,j) = -vibsCmplx + pvibsCmplx;
end
discrete_vib=vibset(:,vib_num); % Select discrete vibe set to use for
comparison
for j=1:length(Coeff)
    adj(:,j)=Coeff{j}\discrete_vib;
    Cmag(:,j) = abs(adj(:,j));
    Cphase(:,j) = (angle(adj(:,j)))*180/pi;
end
VMEP2AVA.mag = Cmag';
VMEP2AVA.phase = Cphase';
save VMEP2AVA.mat VMEP2AVA
```

```
% Calculate the Least Squares Method adjustment
A = LSC.mag.*(cos(LSC.phase*pi/180) + i*sin(LSC.phase*pi/180));
LS_adj=A\discrete_vib;
AVA_adj=LinearAH64A( discrete_vib );
VMEPmag=VMEPadj.mag(vib num,:)
VMEPphase=VMEPadj.phase(vib num,:)
   Determine the max magnitude so we can normalize our adjustments for
   use in plotting on a single graph
for k=1:5
   Max1=max(max(Cmag(k,b:e)), AVA_adj.mag(k));
    %Max1=max(abs(AVA_adj.mag(k)));
   Max2=max(VMEPmag(k), abs(LS_adj(k)));
    Max(k) = max(Max1, Max2);
    Max(k) = max(Cmag(k,b:e));
end
    %figure(1)
    subplot(2,3,1)
   polar(0,1,'.w')
   hold
    % Plot weight adjustments
    polar(Cphase(1,b:e)*pi/180,Cmag(1,b:e)/Max(1),'xr')
    polar(angle(LS_adj(1)),abs(LS_adj(1))/Max(1),'sr')
    polar(AVA adj.phase(1)*pi/180,AVA adj.mag(1)/Max(1),'or')
   polar(VMEPphase(1)*pi/180,VMEPmag(1)/Max(1),'*r')
    % Plot PCR adjustments
    polar(Cphase(2,b:e)*pi/180,Cmag(2,b:e)/Max(2),'xk')
    polar(angle(LS_adj(2)),abs(LS_adj(2))/Max(2),'sk')
   polar(AVA_adj.phase(2)*pi/180,AVA_adj.mag(2)/Max(2),'ok')
    polar(VMEPphase(2)*pi/180,VMEPmag(2)/Max(2),'*k')
    % Plot tab 8 adjustments
    polar(Cphase(3,b:e)*pi/180,Cmag(3,b:e)/Max(3),'xb')
   polar(angle(LS adj(3)),abs(LS adj(3))/Max(3),'sb')
   polar(AVA_adj.phase(3)*pi/180,AVA_adj.mag(3)/Max(3),'ob')
   polar(VMEPphase(3)*pi/180,VMEPmag(3)/Max(3),'*b')
    % Plot tab 6 adjustments
    polar(Cphase(4,b:e)*pi/180,Cmag(4,b:e)/Max(4),'xg')
    polar(angle(LS_adj(4)),abs(LS_adj(4))/Max(4),'sg')
   polar(AVA_adj.phase(4)*pi/180,AVA_adj.mag(4)/Max(4),'og')
   polar(VMEPphase(4)*pi/180,VMEPmag(4)/Max(4),'*g')
    % Plot tab 4 adjustments
    polar(Cphase(5,b:e)*pi/180,Cmag(5,b:e)/Max(5),'xm')
   polar(angle(LS_adj(5)),abs(LS_adj(5))/Max(5),'sm')
   polar(AVA_adj.phase(5)*pi/180,AVA_adj.mag(5)/Max(5),'om')
    polar(VMEPphase(5)*pi/180,VMEPmag(5)/Max(5),'*m')
title('Red-Wt, Black-Pcr, Blue-Tab8, Green-Tab6, Magenta-Tab4')
subplot(2,3,2)
polar(Cphase(1,b:e)*pi/180,Cmag(1,b:e),'xr')
title('Weight')
subplot(2,3,3)
polar(Cphase(2,b:e)*pi/180,Cmag(2,b:e),'xk')
title('Pitch Link')
```

```
subplot(2,3,4)
polar(Cphase(3,b:e)*pi/180,Cmag(3,b:e),'xb')
title('Tab 8-10')
subplot(2,3,5)
polar(Cphase(4,b:e)*pi/180,Cmag(4,b:e),'xg')
title('Tab 6-10')
subplot(2.3.6)
polar(Cphase(5,b:e)*pi/180,Cmag(5,b:e),'xm')
title('Tab 4-10')
 VMEPcplx = VMEPadj.mag.*(cos(VMEPadj.phase*pi/180) + ...
       i*sin(VMEPadj.phase*pi/180));
for j=1:20
       diff(j,:)=abs(VMEPcplx(j,:) -
(A\vibset(:,j)).');%(Coeff{j}\vibset(:,j)).');%
   max(diff)
% Capt Miller
% This function calculates AVA adjustments for the AH-64A.
function adj = LinearAH64A( vibsCmplx )
% This function uses the AH-64A AVA coefficients to calculate
% adjustments based on the values of vibsCmplx
% Matrix of coefficient magnitudes
mag = [0.000330, 0.044, 0.000, 0.000, 0.000; % FPG100 (Lat)
      0.000370, 0.143, 0.000, 0.000, 0.000;
                                              Hover (Lat)
                                           %
      0.000331, 0.054, 0.141, 0.255, 0.286;
                                           % 60 kts (Vert)
      0.000269, 0.062, 0.227, 0.329, 0.363; % 80 kts (Vert)
      0.000390, 0.106, 0.264, 0.434, 0.485; % 100 kts (Vert)
      0.000369, 0.156, 0.405, 0.613, 0.630;
                                          % 120 kts (Vert)
      0.000287, 0.224, 0.436, 0.664, 0.689];
                                            % 140 kts (Vert)
% Matrix of coefficient phases (deg)
                           0;
                                 % FPG100 (Lat)
phase = [165, 21, 0, 0,
                   0,
                      Ο,
                                 % Hover (Lat)
        169, 51,
                            0;
        231, 274, 255, 246, 273;
                               % 60 kts (Vert)
        234, 283, 267, 260, 270;
                                % 80 kts (Vert)
        232, 265, 269, 260, 273;
                                % 100 kts (Vert)
        242, 240, 262, 253, 266;
                                 % 120 kts (Vert)
        250, 239, 249, 245, 267];
                                % 140 kts (Vert)
% Convert the coefficients to complex numbers
A = mag.*(cos(phase*pi/180) + i*sin(phase*pi/180));
% Calculate the adjustments
adjCmplx = A\vibsCmplx;
% Convert the adjustments to magnitude and phase
adj.mag = abs( adjCmplx );
adj.phase = angle( adjCmplx )*180/pi;
```

```
% Capt Miller
\ensuremath{^{\circ}} This function creates a single coefficient matrix from N coefficient
% matrices by summing the squares of the N coefficient matrix
% components and then taking the square root.
function [LSC, standard]=Least_Squares_Coeff(Coeff)
numcoeff=length(Coeff);
numrows=length(Coeff{1}(:,1));
numcollumns=length(Coeff{1}(1,:));
C=zeros(numrows,numcollumns);
for j=1:numcoeff
    A.mag=abs(Coeff{j});
    A.phase=angle(Coeff{j});
    C=C+(A.mag.^2).*(cos( A.phase ) + i*sin( A.phase ) );
end
LSC.mag=sqrt(abs(C)/numcoeff);
LSC.phase=angle(C)*180/pi;
for j=1:numrows
    for k=1:numcollumns
        if LSC.phase(j,k) < 0
            LSC.phase(j,k) = LSC.phase(j,k)+360;
        end
    end
end
LSCcmplx = LSC.mag.*(cos(LSC.phase*pi/180)+i*sin(LSC.phase*pi/180));
for j=1:numcoeff
    diff{j}=abs(Coeff{j}-LSCcmplx);
end
for j=1:numrows
    for k=1:numcollumns
        for l=1:numcoeff
            temp(1)=diff\{1\}(j,k);
        standard(j,k) = std(temp);
    end
end
```

F-10

```
% Capt Miller
% This program will maesure the difference between the VMEP adjustment
% and the ad hoc adjustment for each flight. This is done for normal
% ad hoc coeffcients and ad hoc minus zero coefficients. Intent is to
% determine if the minus zero produces any differences in adjustments.
clear; clc; close all;
load Coeff.mat
load AH64A_Vibes.mat
load AH64A_Coeff_Data.mat
load VMEPadj.mat
[LSC, standard]=Least_Squares_Coeff(Coeff);
n=20;
for j=1:length(Coeff)
    mag = AH64A\_Vibes(j,[1 5 9 13 17 21 25])';
    phase = AH64A_Vibes(j,[2 6 10 14 18 22 26])';
    vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
    pmag = AH64A\_Vibes(j,[3 7 11 15 19 23 27])';
    pphase = AH64A_Vibes(j,[4 8 12 16 20 24 28])';
    pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
);
    vibset(:,j) = -vibsCmplx + pvibsCmplx;
end
for j=1:10
    tmp{2*j-1,:}=Coeff{2*j};% tmp(odd) = A(even)
    tmp{2*j,:}=Coeff{2*j-1};% tmp(even) = A(odd)
end
%clear Coeff;
%Coeff=tmp;
VMEPcplx = VMEPadj.mag.*(cos(VMEPadj.phase*pi/180) + ...
    i*sin(VMEPadj.phase*pi/180))
A = LSC.mag.*(cos(LSC.phase*pi/180) + i*sin(LSC.phase*pi/180));
for j=1:20
%adj(j,:)=A\vibset(:,j); % This one for plotting RMS ad hoc
 adj(j,:)=Coeff{j}\vibset(:,j);%This one for plotting individual ad
hocs
end
for type=1:5
   % figure(type)
   subplot(2,3,type)
polar(angle(adj(1:n,type)),abs(adj(1:n,type)),'ko')
polar(angle(VMEPcplx(1:n,type)),abs(VMEPcplx(1:n,type)),'k+')
end
for j=1:20
        diff(j,:)=abs(VMEPcplx(j,:) - adj(j,:));
    end
diff
max(diff)
```

```
%figure(1)
subplot(2,3,1)
title('Weight')
%legend('Ad Hoc Adjustment','Actual Adjustment')
%figure(2)
subplot(2,3,2)
title('Pitch Link')
%legend('Ad Hoc Adjustment','Actual Adjustment')
%figure(3)
subplot(2,3,3)
title('Trim Tab 8-10')
%legend('Ad Hoc Adjustment','Actual Adjustment')
subplot(2,3,4)
title('Trim Tab 6-10')
subplot(2,3,5)
title('Trim Tab 4-10')
% Capt Nathan A Miller
% This program determines the difference between the AVA algorithm and
% PC-GBS and creates a histogram of the results for each adjustment
type.
clear; clc;
load AVAadj.mat
load VMEPadj.mat
AVAcomplex = AVAadj.mag.*(cos( AVAadj.phase*pi/180 ) +...
    i*sin( AVAadj.phase*pi/180 ) );
VMEPcomplex = VMEPadj.mag.*(cos( VMEPadj.phase*pi/180 ) +...
   i*sin( VMEPadj.phase*pi/180 ) );
Magnitude_diff = abs(AVAcomplex - VMEPcomplex);
Rel_mag_diff = Magnitude_diff./max(VMEPadj.mag, AVAadj.mag);
for i=1:20
   if abs(AVAcomplex(i,1)) < 113/2
       if abs(VMEPcomplex(i,1)) < 113/2
        Rel_mag_diff(i,1)=0;
       abs(AVAcomplex(i,1));
       abs(VMEPcomplex(i,1));
       end
   end
   if abs(AVAcomplex(i,2)) < 0.5/2
       if abs(VMEPcomplex(i,2)) < 0.5/2
        Rel_mag_diff(i,2)=0;
       abs(AVAcomplex(i,2));
       abs(VMEPcomplex(i,2));
       end
   end
```

```
if abs(AVAcomplex(i,3)) < 0.5/2
        if abs(VMEPcomplex(i,3)) < 0.5/2
         Rel_mag_diff(i,3)=0;
        end
    end
    if abs(AVAcomplex(i,4)) < 0.5/2
        if abs(VMEPcomplex(i,4)) < 0.5/2
         Rel_mag_diff(i,4)=0;
        end
    end
    if abs(AVAcomplex(i,5)) < 0.5/2
        if abs(VMEPcomplex(i,5)) < 0.5/2
        Rel_mag_diff(i,5)=0;
        end
    end
end
X = ([0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9]+0.5)/10;
for i=1:5
    [n(i,:),xout(i,:)]=hist(Rel_mag_diff(:,i),X);
    subplot(1,5,i);
    bar(xout(i,:)*100,n(i,:)/0.2,'k');
    AXIS([0 100 0 100])
end
subplot(1,5,1)
title('Weight','FontSize',16)
ylabel('Percentage of Total Flights Sampled', 'FontSize', 16)
subplot(1,5,2)
title('Pitch Link','FontSize',16)
subplot(1,5,3)
title('Tab 8-10','FontSize',16)
xlabel('Percent Difference of PC-GBS Adjustments from AVA Algorithm
Adjustments', 'FontSize', 16)
subplot(1,5,4)
title('Tab 6-10','FontSize',16)
subplot(1,5,5)
title('Tab 4-10','FontSize',16)
% Capt Miller Thesis
% This is a test program to determine if any mistakes were made
% during data entry.
clear all; close all; clc;
load Coeff.mat
[LSC, standard]=Least_Squares_Coeff(Coeff);
[LSCgood, standardgood]=Least_Squares_Coeff(Coeff(1:5));
[LSCexd, standardexd]=Least_Squares_Coeff(Coeff(15:20));
b=1;
e=length(Coeff);
n=1;
for h=1:7
for j=b:e
    value(h, j+1-b, :) = Coeff\{j\}(h, :);
```

```
end
end
vertvalue = value(3:7,:,:);
latvalue = value(1:2,:,:);
for h=1:7
    \max(h) = \max(abs(value(h,:,1)));
    \max 2(h) = \max(abs(value(h,:,2)));
    \max 3(h) = \max(abs(value(h,:,3)));
    \max 4(h) = \max(abs(value(h,:,4)));
    \max 5(h) = \max(abs(value(h,:,5)));
end
for h=1:5
    vertmax1(h)=max(abs(vertvalue(h,:,1)));
    vertmax2(h) = max(abs(vertvalue(h,:,2)));
    vertmax3(h)=max(abs(vertvalue(h,:,3)));
    vertmax4(h)=max(abs(vertvalue(h,:,4)));
    vertmax5(h)=max(abs(vertvalue(h,:,5)));
end
for h=1:2
    latmax1(h) = max(abs(latvalue(h,:,1)));
    latmax2(h) = max(abs(latvalue(h,:,2)));
    latmax3(h) = max(abs(latvalue(h,:,3)));
    latmax4(h) = max(abs(latvalue(h,:,4)));
    latmax5(h) = max(abs(latvalue(h,:,5)));
end
for h=1:7
subplot(3,3,h)
%polar(angle(value(h,:,1)),abs(value(h,:,1))/max1(h),'bx')
polar(angle(value(h,:,n)),abs(value(h,:,n)),'rx')
subplot(3,3,1)
title('FPG100 Lat')
subplot(3,3,2)
title('Hover Lat')
subplot(3,3,3)
title('60 Kts Vert')
subplot(3,3,4)
title('80 Kts Vert')
subplot(3,3,5)
title('100 Kts Vert')
subplot(3,3,6)
title('120 Kts Vert')
subplot(3,3,7)
title('140 Kts Vert')
figure(2)
for i=1:5
    temp1 = max(vertmax1(i), vertmax2(i));
    temp2 = max(vertmax3(i), vertmax4(i));
    temp3 = max(temp1, temp2);
```

```
maxval = max(temp3,vertmax5(i));
subplot(2,3,i)
                  % Each subplot is for a different lateral regime
polar(0,maxval,'w.')
hold on
polar(angle(vertvalue(i,:,1)),abs(vertvalue(i,:,1)),'kx')
polar(angle(vertvalue(i,:,2)),abs(vertvalue(i,:,2)),'kd')
polar(angle(vertvalue(i,:,3)),abs(vertvalue(i,:,3)),'k^')
polar(angle(vertvalue(i,:,4)),abs(vertvalue(i,:,4)),'kv')
polar(angle(vertvalue(i,:,5)),abs(vertvalue(i,:,5)),'kp')
end
figure(3)
for i=1:2
    temp1 = max(latmax1(i),latmax2(i));
    temp2 = max(latmax3(i),latmax4(i));
    temp3 = max(temp1, temp2);
    maxval = max(temp3,latmax5(i));
subplot(1,2,i)
                 % Each subplot is for a different lateral regime
polar(0,maxval,'w.')
hold on
polar(angle(latvalue(i,:,1)),abs(latvalue(i,:,1)*100),'kx')
polar(angle(latvalue(i,:,2)),abs(latvalue(i,:,2)),'kd')
polar(angle(latvalue(i,:,3)),abs(latvalue(i,:,3)),'k^')
polar(angle(latvalue(i,:,4)),abs(latvalue(i,:,4)),'kv')
polar(angle(latvalue(i,:,5)),abs(latvalue(i,:,5)),'kp')
end
figure(4)
polar(0,maxval,'w.')
hold on
polar(angle(latvalue(i,:,1)),abs(latvalue(i,:,1)*100),'ko')
polar(angle(latvalue(i,:,2)),abs(latvalue(i,:,2)),'kd')
polar(angle(latvalue(i,:,3)),abs(latvalue(i,:,3)),'k^')
polar(angle(latvalue(i,:,4)),abs(latvalue(i,:,4)),'kv')
polar(angle(latvalue(i,:,5)),abs(latvalue(i,:,5)),'kp')
title('Ad Hoc Coefficients for Hover(Lat) for AH-64A')
abs(LSCexd.mag-LSCgood.mag)./LSCgood.mag*100
```

F-15

Appendix G: AH-64D Matlab Code

Note: The Matlab codes contained in this appendix were each used to perform one or more specific functions in the course of this research. There are several instances where parts of the code have been commented out with the % symbol. In order to reproduce all of the analysis of this thesis, some lines of code may need to be un-commented and other lines commented out.

```
% Capt Nathan A Miller
% This program creates MAT data files from imported Excel database
% Ensure that the two databases are imported into matlab prior to
running
function Excel to MAT
global data data2
n = length(data2(:,2))-2
% Read Vibration Magnitude and Phase as well as prediction magnitude
% and phase from Excel File and assign to data matrix
Longbow_Vibes = zeros(n,28);
for j=1:n
    for k=1:7
       Longbow_Vibes(j,1+4*(k-1)) = data(1+k+(j-1)*11,2);
       Longbow_Vibes(j,2+4*(k-1)) = data(1+k+(j-1)*11,3);
       Longbow_Vibes(j, 3+4*(k-1)) = data(1+k+(j-1)*11,4);
       Longbow_Vibes(j, 4+4*(k-1)) = data(1+k+(j-1)*11, 5);
    end
end
save Longbow Vibes.mat Longbow Vibes
Longbow VMEP Adjustments = zeros(n,20);
for j=1:n
    for k=1:20
   Longbow VMEP Adjustments(j,k) = data2(j+2,k+1);
    end
save Longbow_VMEP_Adjustments.mat Longbow_VMEP_Adjustments
Longbow\_Coeff\_Data = zeros(n,75);
for j=1:n
    Longbow Coeff Data(j,1)=data(2+(j-1)*11,6);
    \label{longbow_coeff_data(j,16)=data(2+(j-1)*11,9)} \enskip % Records manual adjustment
   Longbow\_Coeff\_Data(j,31)=data(2+(j-1)*11,12); % that produces delta vibes
   Longbow\_Coeff\_Data(j,46)=data(2+(j-1)*11,15);
   Longbow_Coeff_Data(j,61)=data(2+(j-1)*11,18);
    for k=1:7
      for z=1:5
        Longbow_Coeff_Data(j, 2*k+15*(z-1)) = data(1+k+(j-1)*11, 7+3*(z-1));
        Longbow\_Coeff\_Data(j,2*k+1+15*(z-1))=data(1+k+(j-1)*11,8+3*(z-1));
       Longbow_Coeff_Data(j,74+2*k)=data(1+k+(j-1)*11,21);
       Longbow\_Coeff\_Data(j,75+2*k)=data(1+k+(j-1)*11,22);
    end
save Longbow_Coeff_Data.mat Longbow_Coeff_Data
```

```
% Capt Miller
% This program converts the coefficient matrix data into actual
% coefficient matrices. The program loads the raw vibe data from
% AH64A_Vibes.mat and computes a delta vibe from the predicted vibe
% values stored in AH64A Coeff Data.mat. The coefficient matrix is
% computed column by column. Once computed, the coefficient matrix
% operates on a vibe set to produce a quasi-linear adjustment set.
% This process is repeated for each coefficient data set. The same
% vibe set is always used for comparison.
function VMEP_Coefficient_Matrix
FLG=-1;
delta=0;
load Longbow_Vibes.mat
load Longbow_Coeff_Data.mat
n=length(Longbow Vibes(:,1));
for j=1:n
        wt = Longbow_Coeff_Data(j,1);
        pl = Longbow_Coeff_Data(j,16);
        tab8 = Longbow_Coeff_Data(j,31);
        tab6 = Longbow Coeff Data(j,46);
        tab4 = Longbow Coeff Data(j,61);
    for k=1:7 % loops over the 7 flight conditons, FPG100 through 140 Knots
        vibmag=Longbow Vibes(j,1+4*(k-1));
        vibphase=Longbow_Vibes(j, 2+4*(k-1));
        vibcmplx=vibmag*(cos( vibphase*pi/180 ) + ...
            i*sin( vibphase*pi/180 ) );
        pvibwtmag=Longbow_Coeff_Data(j,2+2*(k-1));
        pvibwtphase=Longbow Coeff Data(j,3+2*(k-1));
        pvibwtcmplx=pvibwtmag*(cos( pvibwtphase*pi/180 ) + ...
            i*sin( pvibwtphase*pi/180 ) );
        pvibplmag=Longbow_Coeff_Data(j,17+2*(k-1));
        pvibplphase=Longbow_Coeff_Data(j,18+2*(k-1));
        pvibplcmplx=pvibplmag*(cos( pvibplphase*pi/180 ) + ...
            i*sin( pvibplphase*pi/180 ) );
        pvibtab8mag=Longbow_Coeff_Data(j,32+2*(k-1));
        pvibtab8phase=Longbow_Coeff_Data(j,33+2*(k-1));
        pvibtab8cmplx=pvibtab8mag*(cos( pvibtab8phase*pi/180 ) + ...
            i*sin( pvibtab8phase*pi/180 ) );
        pvibtab6mag=Longbow_Coeff_Data(j,47+2*(k-1));
        pvibtab6phase=Longbow_Coeff_Data(j,48+2*(k-1));
        pvibtab6cmplx=pvibtab6mag*(cos( pvibtab6phase*pi/180 ) + ...
            i*sin( pvibtab6phase*pi/180 ) );
        pvibtab4mag=Longbow Coeff Data(j,62+2*(k-1));
        pvibtab4phase=Longbow Coeff Data(j,63+2*(k-1));
        pvibtab4cmplx=pvibtab4mag*(cos( pvibtab4phase*pi/180 ) + ...
```

```
i*sin( pvibtab4phase*pi/180 ) );
       if FLG > 0
       zeromag=Longbow_Coeff_Data(j,76+2*(k-1));
       zerophase=Longbow_Coeff_Data(j,77+2*(k-1));
       zerocmplx=zeromag*(cos( zerophase*pi/180 ) + ...
           i*sin( zerophase*pi/180 ) );
       delta=vibcmplx-zerocmplx;
       end
       dvibwt=pvibwtcmplx-vibcmplx-delta;
       dvibpl=pvibplcmplx-vibcmplx-delta;
       dvibtab8=pvibtab8cmplx-vibcmplx-delta;
       dvibtab6=pvibtab6cmplx-vibcmplx-delta;
       dvibtab4=pvibtab4cmplx-vibcmplx-delta;
       A(k,1)=dvibwt/wt;
       A(k,2)=dvibpl/pl;
       A(k,3) = dvibtab8/tab8;
       A(k,4) = dvibtab6/tab6;
       A(k,5) = dvibtab4/tab4;
   end
   Coeff{j}=A;
end
save Coeff.mat Coeff
% Capt Nathan A Miller
% Converts VMEP adjustments into magnitude and phase of adjustments.
function VMEP_2_MagPhase
load Longbow_VMEP_Adjustments.mat
n = length(Longbow_VMEP_Adjustments(:,1));
a=Longbow VMEP Adjustments;
clear Longbow_VMEP_Adjustments
for j=1:n
 응
                                    3
   adjcmplx(j,1) = +a(j,1)-i*a(j,6)-a(j,11)+i*a(j,16); % Weight Adj
   adjcmplx(j,2) = +a(j,2)-i*a(j,7)-a(j,12)+i*a(j,17); % P/L Adj
   adjcmplx(j,3) = +a(j,3)-i*a(j,8)-a(j,13)+i*a(j,18); % Tab Adj 8
   adjcmplx(j,4) = +a(j,4)-i*a(j,9)-a(j,14)+i*a(j,19); % Tab Adj 6
   adjcmplx(j,5) = +a(j,5)-i*a(j,10)-a(j,15)+i*a(j,20); % Tab Adj 4
end
VMEPadj.mag=abs(adjcmplx);
VMEPadj.phase = angle(adjcmplx)*180/pi;
save VMEPadi.mat VMEPadi
```

```
% Capt Nathan A Miller
% Thesis work
% This program loads vibe data and calculates an AVA adjustment matrix
function Vibs2AVA ADJ
load Longbow Vibes.mat
n = length(Longbow_Vibes(:,1));
for j=1:n
mag = Longbow_Vibes(j,[1 5 9 13 17 21 25])';
phase = Longbow_Vibes(j,[2 6 10 14 18 22 26])';
vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
pmag = Longbow_Vibes(j,[3 7 11 15 19 23 27])';
pphase = Longbow_Vibes(j,[4 8 12 16 20 24 28])';
pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 ) );
delvib = -vibsCmplx + pvibsCmplx;
adj(j) = LinearLongbow( delvib );
end
for k=1:n
        magnitude(k,:) = adj(k).mag';
       Phase(k,:) = adj(k).phase';
end
AVAadj.mag = magnitude;
AVAadj.phase = Phase;
save AVAadj.mat AVAadj
% Capt Miller
% This file computes ad hoc coefficients using all flights, only good
% flights, and only exceedence flights. These coefficients are then
% compared by producing adjustment sets for the 20 sampled flights.
% The differences in adjustments are then compared based on the "Good"
% flight ad hoc matrix and the "Exceed" flight ad hoc matrix. If the
two
% matrices produce adjustments that are within the tolerance of
mechanical
% limitations of the aircraft, then the adjustment types are
identical.
clear, close all, clc;
load Coeff.mat
load Longbow_Vibes.mat
[LSC, standard]=Least_Squares_Coeff(Coeff);
[LSCgood, standardgood]=Least_Squares_Coeff(Coeff(1:5));
[LSCexd, standardexd]=Least_Squares_Coeff(Coeff(15:20));
LSCgoodcplx = LSCgood.mag.*(cos(LSCgood.phase*pi/180) + ...
    i*sin(LSCgood.phase*pi/180));
```

```
LSCexdcplx = LSCexd.mag.*(cos(LSCexd.phase*pi/180) + ...
    i*sin(LSCexd.phase*pi/180));
for j=1:length(Coeff)
   mag = Longbow Vibes(j,[1 5 9 13 17 21 25])';
   phase = Longbow Vibes(j,[2 6 10 14 18 22 26])';
   vibsCmplx = maq.*(cos(phase*pi/180) + i*sin(phase*pi/180));
   pmag = Longbow_Vibes(j,[3 7 11 15 19 23 27])';
   pphase = Longbow_Vibes(j,[4 8 12 16 20 24 28])';
   pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
);
   vibset(:,j) = -vibsCmplx+pvibsCmplx;
end
for j=1:length(Coeff)
   discrete_vib=vibset(:,j);
    adjgood(j,:)=LSCgoodcplx\discrete_vib;
    adjexceed(j,:)=LSCexdcplx\discrete_vib;
diff = abs(adjgood-adjexceed)
\max diff(1:5) = \max (diff(:,1:5))
PctDiffCoeff = abs(LSCgoodcplx-LSCexdcplx)./abs(LSCgoodcplx)*100
% Capt Miller
% This program plots AVA, VMEP, and ad hoc adjustments together for
% comparison. It also plots RMS of ad hoc.
clear;clc;clf;
load Coeff.mat
load Longbow_Vibes.mat
load VMEPadj.mat
% Runs the Least Squares Coefficient function to
                    % generate the LSC matrix from the Coeff cell.
[LSC, standard]=Least_Squares_Coeff(Coeff)
vib num=16
b=1
e=length(Coeff)
for j=1:length(Coeff)
    mag = Longbow_Vibes(j,[1 5 9 13 17 21 25])';
   phase = Longbow_Vibes(j,[2 6 10 14 18 22 26])';
   vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
   pmag = Longbow_Vibes(j,[3 7 11 15 19 23 27])';
   pphase = Longbow_Vibes(j,[4 8 12 16 20 24 28])';
   pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
   vibset(:,j) = -vibsCmplx+pvibsCmplx;
end
discrete_vib=vibset(:,vib_num); % Select discrete vibe set to use for
comparison
```

```
for j=1:length(Coeff)
     adj(:,j)=Coeff{j}\discrete_vib;
     Cmag(:,j) = abs(adj(:,j));
     Cphase(:,j) = (angle(adj(:,j)))*180/pi;
end
VMEP2AVA.mag = Cmag';
VMEP2AVA.phase = Cphase';
save VMEP2AVA.mat VMEP2AVA
    % Calculate the Least Squares Method adjustment
A = LSC.mag.*(cos(LSC.phase*pi/180) + i*sin(LSC.phase*pi/180));
LS_adj=A\discrete_vib;
AVA_adj=LinearLongbow( discrete_vib );
VMEPmag=VMEPadj.mag(vib_num,:)
VMEPphase=VMEPadj.phase(vib_num,:)
   Determine the max magnitude so we can normalize our adjustments for
   use in plotting on a single graph
for k=1:5
   Max1=max(max(Cmag(k,b:e)), AVA adj.mag(k));
    %Max1=max(abs(AVA adj.mag(k)));
   Max2=max(VMEPmag(k), abs(LS_adj(k)));
   Max(k) = max(Max1, Max2);
    Max(k) = max(Cmaq(k,b:e));
end
    figure(1)
    subplot(2,3,1)
   polar(0,1,'.w')
   hold
    % Plot weight adjustments
    polar(Cphase(1,b:e)*pi/180,Cmag(1,b:e)/Max(1),'xr')
    polar(angle(LS_adj(1)),abs(LS_adj(1))/Max(1),'sr')
    polar(AVA_adj.phase(1)*pi/180,AVA_adj.mag(1)/Max(1),'or')
   polar(VMEPphase(1)*pi/180,VMEPmag(1)/Max(1),'*r')
    % Plot PCR adjustments
    polar(Cphase(2,b:e)*pi/180,Cmag(2,b:e)/Max(2),'xk')
    polar(angle(LS adj(2)),abs(LS adj(2))/Max(2),'sk')
   polar(AVA_adj.phase(2)*pi/180,AVA_adj.mag(2)/Max(2),'ok')
   polar(VMEPphase(2)*pi/180,VMEPmag(2)/Max(2),'*k')
    % Plot tab 8 adjustments
    polar(Cphase(3,b:e)*pi/180,Cmag(3,b:e)/Max(3),'xb')
    polar(angle(LS_adj(3)),abs(LS_adj(3))/Max(3),'sb')
    polar(AVA_adj.phase(3)*pi/180,AVA_adj.mag(3)/Max(3),'ob')
   polar(VMEPphase(3)*pi/180,VMEPmag(3)/Max(3),'*b')
    % Plot tab 6 adjustments
    polar(Cphase(4,b:e)*pi/180,Cmag(4,b:e)/Max(4),'xg')
```

```
polar(angle(LS_adj(4)),abs(LS_adj(4))/Max(4),'sg')
   polar(AVA_adj.phase(4)*pi/180,AVA_adj.mag(4)/Max(4),'og')
    polar(VMEPphase(4)*pi/180,VMEPmag(4)/Max(4),'*g')
    % Plot tab 4 adjustments
    polar(Cphase(5,b:e)*pi/180,Cmag(5,b:e)/Max(5),'xm')
   polar(angle(LS adj(5)),abs(LS adj(5))/Max(5),'sm')
   polar(AVA_adj.phase(5)*pi/180,AVA_adj.mag(5)/Max(5),'om')
   polar(VMEPphase(5)*pi/180,VMEPmag(5)/Max(5),'*m')
title('Red-Wt, Black-Pcr, Blue-Tab8, Green-Tab6, Magenta-Tab4')
subplot(2,3,2)
polar(Cphase(1,b:e)*pi/180,Cmag(1,b:e),'xr')
subplot(2,3,3)
polar(Cphase(2,b:e)*pi/180,Cmag(2,b:e),'xk')
subplot(2,3,4)
polar(Cphase(3,b:e)*pi/180,Cmag(3,b:e),'xb')
subplot(2,3,5)
polar(Cphase(4,b:e)*pi/180,Cmag(4,b:e),'xg')
subplot(2,3,6)
polar(Cphase(5,b:e)*pi/180,Cmag(5,b:e),'xm')
VMEPcplx = VMEPadj.mag.*(cos(VMEPadj.phase*pi/180) + ...
        i*sin(VMEPadj.phase*pi/180));
for j=1:20
        diff(j,:)=abs(VMEPcplx(j,:) - (A\vibset(:,j)).')
    end
    max(diff)
 figure(2)
   polar(0,1,'.w')
   hold
    % Plot weight adjustments
   polar(AVA adj.phase(1)*pi/180,AVA adj.mag(1)/Max(1),'or')
   polar(VMEPphase(1)*pi/180,VMEPmag(1)/Max(1),'*r')
    % Plot PCR adjustments
   polar(AVA_adj.phase(2)*pi/180,AVA_adj.mag(2)/Max(2),'ok')
   polar(VMEPphase(2)*pi/180,VMEPmag(2)/Max(2),'*k')
    % Plot tab 8 adjustments
   polar(AVA_adj.phase(3)*pi/180,AVA_adj.mag(3)/Max(3),'ob')
   polar(VMEPphase(3)*pi/180,VMEPmag(3)/Max(3),'*b')
    % Plot tab 6 adjustments
   polar(AVA_adj.phase(4)*pi/180,AVA_adj.mag(4)/Max(4),'og')
   polar(VMEPphase(4)*pi/180,VMEPmag(4)/Max(4),'*g')
    % Plot tab 4 adjustments
   polar(AVA_adj.phase(5)*pi/180,AVA_adj.mag(5)/Max(5),'om')
   polar(VMEPphase(5)*pi/180,VMEPmag(5)/Max(5),'*m')
```

```
function adj = LinearLongbow( vibsCmplx )
% This function calculates adjustments according to AVA coefficients.
% Input:
   vibsCmplx = matrix of complex vibration data
% Output:
  adi
         = adjustment vector [hub weight(oz), pitch link(notch), 3 X
trim tab(oz)l
% Matrix of AVA coefficient magnitudes
mag = [0.0004936, 0.04448, 0, 0, 0]
                                       0;
                                                % FPG100 (Lat)
      0.0004580, 0.15600, 0,
                               Ο,
                                      0;
                                               % Hover (Lat)
      0.0004696, 0.03924, 0.1605, 0.3385, 0.6507; % 60 kts (Vert)
      0.0004546, 0.06359, 0.1714, 0.2886, 0.7391; % 80 kts (Vert)
      0.0004825, 0.11370, 0.1888, 0.3168, 0.6596; % 100 kts (Vert)
      0.0004547, 0.18190, 0.2161, 0.3747, 0.6992; % 120 kts (Vert)
      0.0004519, 0.24340, 0.3071, 0.4467, 0.9085]; % 140 kts (Vert)
% Matrix of AVA coefficient phases (deg)
phase = [163.0, 15.5, 0,
                                           % FPG100 (Lat)
                                   0;
        171.2, 57.5,
                     Ο,
                             Ο,
                                   0;
                                          % Hover (Lat)
        211.9, 286.6, 263.5, 270.6, 256.1; % 60 kts (Vert)
        235.6, 247.2, 250.3, 260.5, 250.5];
                                           % 140 kts (Vert)
% Convert the coefficients to complex numbers
A = mag.*(cos(phase*pi/180) + i*sin(phase*pi/180));
% Calculate the adjustments
adjCmplx = A\vibsCmplx;
% Convert the adjustments to magnitude and phase
adj.mag = abs( adjCmplx );
adj.phase = angle( adjCmplx )*180/pi;
% Capt Miller
% This function creates a single coefficient matrix from N coefficient
% matrices by summing the squares of the N coefficient matrix
% and then taking the square root.
function [LSC, standard]=Least_Squares_Coeff(Coeff)
numcoeff=length(Coeff);
numrows=length(Coeff{1}(:,1));
numcollumns=length(Coeff{1}(1,:));
C=zeros(numrows,numcollumns);
for j=1:numcoeff
   A.mag=abs(Coeff{j});
   A.phase=angle(Coeff{j});
   C=C+(A.mag.^2).*(cos( A.phase ) + i*sin( A.phase ) );
end
```

```
LSC.mag=sqrt(abs(C)/numcoeff);
LSC.phase=angle(C)*180/pi;
for j=1:numrows
   for k=1:numcollumns
       if LSC.phase(j,k) < 0
           LSC.phase(j,k) = LSC.phase(j,k)+360;
       end
   end
end
LSCcmplx = LSC.mag.*(cos(LSC.phase*pi/180)+i*sin(LSC.phase*pi/180));
for j=1:numcoeff
   diff{j}=abs(Coeff{j}-LSCcmplx);
end
for j=1:numrows
   for k=1:numcollumns
       for l=1:numcoeff
           temp(1)=diff\{1\}(j,k);
       standard(j,k) = std(temp);
   end
end
% Capt Miller
% This program will maesure the difference between the VMEP adjustment
and
  the ad hoc adjustment for each flight. Plots are also generated of
ad
% hoc and VMEP adjustments.
clear;clc;close all;
load Coeff.mat
load Longbow_Vibes.mat
load Longbow_Coeff_Data.mat
load VMEPadj.mat
n=20;
[LSC, standard]=Least_Squares_Coeff(Coeff)
for j=1:length(Coeff)
   mag = Longbow_Vibes(j,[1 5 9 13 17 21 25])';
   phase = Longbow_Vibes(j,[2 6 10 14 18 22 26])';
   vibsCmplx = mag.*(cos( phase*pi/180 ) + i*sin( phase*pi/180 ) );
   pmag = Longbow_Vibes(j,[3 7 11 15 19 23 27])';
   pphase = Longbow_Vibes(j,[4 8 12 16 20 24 28])';
   pvibsCmplx = pmag.*(cos( pphase*pi/180 ) + i*sin( pphase*pi/180 )
);
   vibset(:,j) = -vibsCmplx+pvibsCmplx;
end
```

G-9

```
VMEPcplx = VMEPadj.mag.*(cos(VMEPadj.phase*pi/180) + ...
          i*sin(VMEPadj.phase*pi/180))
A = LSC.mag.*(cos(LSC.phase*pi/180) + i*sin(LSC.phase*pi/180));
for j=1:10
          tmp{2*j-1,:}=Coeff{2*j};% tmp(odd) = A(even)
          tmp{2*j,:}=Coeff{2*j-1};% tmp(even) = A(odd)
end
clear Coeff;
Coeff=tmp;
for j=1:n
  \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(j,:)=A\vibset(:,j); \adj(i,i)=A\vibset(:,j); \adj(i,i)=A\vibset(:,j): \adj(i,i): \adj(i,i)=A\vibset(:,j): \adj(i,i): \adj(i
          adj(j,:)=Coeff{j}\vibset(:,j);%This one for plotting individual ad
hocs
end
for type=1:5
          subplot(2,3,type)
polar(angle(adj(1:n,type)),abs(adj(1:n,type)),'ko')
polar(angle(VMEPcplx(1:n,type)),abs(VMEPcplx(1:n,type)),'k+')
end
for i=1:20
                    diff(j,:)=abs(VMEPcplx(j,:) - adj(j,:));
          end
diff
max(diff)
%figure(1)
subplot(2,3,1)
title('Weight')
%legend('Ad Hoc Adjustment','Actual Adjustment')
%figure(2)
subplot(2,3,2)
title('Pitch Link')
%legend('Ad Hoc Adjustment','Actual Adjustment')
%figure(3)
subplot(2,3,3)
title('Trim Tab 8-10')
%legend('Ad Hoc Adjustment','Actual Adjustment')
subplot(2,3,4)
title('Trim Tab 6-10')
subplot(2,3,5)
title('Trim Tab 4-10')
% Capt Nathan A Mille
% This program generates the histograms showing difference between AH-
64D
% AVA adjustments from PC-GBS adjustments.
clear; clc;
load AVAadi.mat
load VMEPadj.mat
```

```
AVAcomplex = AVAadj.mag.*(cos( AVAadj.phase*pi/180 ) +...
    i*sin( AVAadj.phase*pi/180 ) );
VMEPcomplex = VMEPadj.mag.*(cos( VMEPadj.phase*pi/180 ) +...
    i*sin( VMEPadj.phase*pi/180 ) );
Magnitude diff = abs(AVAcomplex - VMEPcomplex);
Rel_mag_diff = Magnitude_diff./AVAadj.mag;%max(VMEPadj.mag,
AVAadj.mag);
for i=1:20
    if abs(AVAcomplex(i,1)) < 113/2
        if abs(VMEPcomplex(i,1)) < 113/2
         Rel_mag_diff(i,1)=0;
        abs(AVAcomplex(i,1));
        abs(VMEPcomplex(i,1));
        end
    end
    if abs(AVAcomplex(i,2)) < 0.5/2
        if abs(VMEPcomplex(i,2)) < 0.5/2
         Rel mag diff(i,2)=0;
        abs(AVAcomplex(i,2));
        abs(VMEPcomplex(i,2));
    end
    if abs(AVAcomplex(i,3)) < 0.5/2
        if abs(VMEPcomplex(i,3)) < 0.5/2
         Rel_mag_diff(i,3)=0;
        end
    end
    if abs(AVAcomplex(i,4)) < 0.5/2
        if abs(VMEPcomplex(i,4)) < 0.5/2
         Rel_mag_diff(i,4)=0;
        end
    end
    if abs(AVAcomplex(i,5)) < 0.5/2
        if abs(VMEPcomplex(i,5)) < 0.5/2
        Rel_mag_diff(i,5)=0;
        end
    end
end
X = ([0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9]+0.5)/10;
for i=1:5
    [n(i,:),xout(i,:)]=hist(Rel_mag_diff(:,i),X);
    subplot(1,5,i);
    bar(xout(i,:)*100,n(i,:)/0.2,'k');
    axis([0 100 0 100])
end
subplot(1,5,1)
title('Weight','FontSize',16)
ylabel('Percentage of Total Flights Sampled', 'FontSize', 16)
```

```
subplot(1,5,2)
title('Pitch Link', 'FontSize', 16)
subplot(1,5,3)
title('Tab 8-10','FontSize',16)
xlabel('Percent Difference of PC-GBS Adjustments from AVA Algorithm
Adjustments', 'FontSize', 16)
subplot(1,5,4)
title('Tab 6-10','FontSize',16)
subplot(1,5,5)
title('Tab 4-10','FontSize',16)
% Capt Miller Thesis
% This is a test program to determine if any mistakes were made
% during data entry. All AH-64D coefficients are plotted together.
Errors
% will show up as individual coefficients plotting grossly different
% the rest of the coefficients.
clear all; close all; clc;
load Coeff.mat
[LSC, standard]=Least_Squares_Coeff(Coeff);
[LSCgood, standardgood]=Least Squares Coeff(Coeff(1:5));
[LSCexd, standardexd]=Least_Squares_Coeff(Coeff(15:20));
b=1;
e=length(Coeff);
n=1;
for h=1:7
for j=b:e
    value(h, j+1-b,:)=Coeff\{j\}(h,:);
end
end
vertvalue = value(3:7,:,:);
latvalue = value(1:2,:,:);
for h=1:7
    \max(h) = \max(abs(value(h,:,1)));
    \max 2(h) = \max(abs(value(h,:,2)));
    \max 3(h) = \max(abs(value(h,:,3)));
    \max 4(h) = \max(abs(value(h,:,4)));
    \max 5(h) = \max(abs(value(h,:,5)));
end
for h=1:5
    vertmax1(h)=max(abs(vertvalue(h,:,1)));
    vertmax2(h) = max(abs(vertvalue(h,:,2)));
    vertmax3(h)=max(abs(vertvalue(h,:,3)));
    vertmax4(h) = max(abs(vertvalue(h,:,4)));
    vertmax5(h) = max(abs(vertvalue(h,:,5)));
end
for h=1:2
    latmax1(h) = max(abs(latvalue(h,:,1)));
```

```
latmax2(h) = max(abs(latvalue(h,:,2)));
    latmax3(h)=max(abs(latvalue(h,:,3)));
    latmax4(h)=max(abs(latvalue(h,:,4)));
    latmax5(h)=max(abs(latvalue(h,:,5)));
end
for h=1:7
%figure(h)
subplot(3,3,h)
{\tt %polar(angle(value(h,:,1)),abs(value(h,:,1))/max1(h),'bx')}
polar(angle(value(h,:,n)),abs(value(h,:,n)),'rx')
%hold on
%figure(2)
%subplot(3,3,h)
%polar(angle(value(h,:,2)),abs(value(h,:,2))/max2(h),'rx')
%figure(3)
%subplot(3,3,h)
%polar(angle(value(h,:,3)),abs(value(h,:,3))/max3(h),'gx')
%polar(angle(value(h,:,4)),abs(value(h,:,4))/max4(h),'mx')
%polar(angle(value(h,:,5)),abs(value(h,:,5))/max5(h),'cx')
end
subplot(3,3,1)
title('FPG100 Lat')
subplot(3,3,2)
title('Hover Lat')
subplot(3,3,3)
title('60 Kts Vert')
subplot(3,3,4)
title('80 Kts Vert')
subplot(3,3,5)
title('100 Kts Vert')
subplot(3,3,6)
title('120 Kts Vert')
subplot(3,3,7)
title('140 Kts Vert')
figure(2)
for i=1:5
    temp1 = max(vertmax1(i), vertmax2(i));
    temp2 = max(vertmax3(i), vertmax4(i));
    temp3 = max(temp1, temp2);
    maxval = max(temp3, vertmax5(i));
subplot(2,3,i)
                  % Each subplot is for a different lateral regime
polar(0,maxval,'w.')
hold on
polar(angle(vertvalue(i,:,1)),abs(vertvalue(i,:,1)),'kx')
polar(angle(vertvalue(i,:,2)),abs(vertvalue(i,:,2)),'kd')
polar(angle(vertvalue(i,:,3)),abs(vertvalue(i,:,3)),'k^')
polar(angle(vertvalue(i,:,4)),abs(vertvalue(i,:,4)),'kv')
polar(angle(vertvalue(i,:,5)),abs(vertvalue(i,:,5)),'kp')
end
figure(3)
```

```
for i=1:2
    temp1 = max(latmax1(i),latmax2(i));
    temp2 = max(latmax3(i), latmax4(i));
    temp3 = max(temp1, temp2);
    maxval = max(temp3,latmax5(i));
subplot(1,2,i)
                  % Each subplot is for a different lateral regime
polar(0,maxval,'w.')
hold on
polar(angle(latvalue(i,:,1)),abs(latvalue(i,:,1)*100),'kx')
polar(angle(latvalue(i,:,2)),abs(latvalue(i,:,2)),'kd')
polar(angle(latvalue(i,:,3)),abs(latvalue(i,:,3)),'k^')
polar(angle(latvalue(i,:,4)),abs(latvalue(i,:,4)),'kv')
polar(angle(latvalue(i,:,5)),abs(latvalue(i,:,5)),'kp')
end
figure(4)
polar(0,maxval,'w.')
hold on
polar(angle(latvalue(i,:,1)),abs(latvalue(i,:,1)*100),'ko')
polar(angle(latvalue(i,:,2)),abs(latvalue(i,:,2)),'kd')
polar(angle(latvalue(i,:,3)),abs(latvalue(i,:,3)),'k^')
polar(angle(latvalue(i,:,4)),abs(latvalue(i,:,4)),'kv')
polar(angle(latvalue(i,:,5)),abs(latvalue(i,:,5)),'kp')
title('Ad Hoc Coefficients for Hover(Lat) for AH-64A')
abs(LSCexd.mag-LSCgood.mag)./LSCgood.mag*100
```

Bibliography

- 1. Wroblewski, D., Branhof, R.W., and Cook, T., "Neural Networks for Smoothing of Helicopter Rotors," American Helicopter Society 57th Annual Forum Proceedings, Washington, DC, May 2001, pp. 1587-1594.
- 2. Wroblewski, D., Grabill, P., Berry, J.D., and Branhof, R.W., "Neural Network System for Helicopter Rotor Smoothing," IEEE 2000 Aerospace Conference Proceedings, Big Sky, Montana, March 2000, pp. 271-276.
- 3. Taitel, H., Danai, K., and Gauthier, D., "Helicopter Track and Balance With Artificial Neural Nets," *ASME Journal of Dynamic Systems, Measurement, and Control*, Vol. 117, No. 2, June 1995, pp. 226-231.
- 4. Meirovitch, Leonard. Fundamentals of Vibrations. New York: McGraw-Hill Book Co., 2001
- 5. Renzi, Michael J. *An Assessment of Modern Methods for Rotor Track and Balance*. MS thesis, AFIT/GAE/ENY/04-J11. Graduate School of Engineering and Management, Air Force Institute of Technology, Wright Patterson AFB OH, June 2004
- 6. Johnson, Lloyd. "HISTORY: Helicopter Rotor Smoothing." Article. n. pag. http://www.dssmicro.com/theory/dsrothst.htm. 25 August 2003.
- 7. Robinson, Mike. "Helicopter Track and Balance Theory." http://www.amtonline.com/publication/article.jsp?pubId=1&id=844 February 1999.
- 8. Demuth, H., Beale, M., Hagan, M., "Neural Network Toolbox User's Guide," The Mathworks, Inc.
- 9. Branhoff, R.W., Keller, J.A., Grant, L., and Grabill, P., "Application of Automated Rotor Smoothing Using Continuous Vibration Measurements," Proceedings of the 61st Annual Forum of the American Helicopter Society, Grapevine, Texas, June 2005.

Vita

Captain Nathan A. Miller graduated from Tippecanoe High School in Tipp City,
Ohio. He entered undergraduate studies at The Ohio State University in Columbus, Ohio
where he graduated with a Bachelor of Science in Aeronautical and Astronautical
Engineering in June 1996. He was commissioned through the PLC program as a Second
Lieutenant in the United States Marine Corps.

His first assignment was at MCB Quantico as a student at The Basic School. In April 1997, he was ordered to NAS Pensacola to undergo flight training. In March 1999 he was designated a Naval Aviator and, following initial flight training in the CH-53E, was assigned to Marine Heavy Helicopter 461 at MCAS New River, North Carolina. He deployed with the 24th Marine Expeditionary Unit from April to October 2001 and again with the 22nd MEU from February to July 2004. While with the 22nd MEU, he participated in combat operations in Afghanistan. In August 2004, he entered the Graduate School of Engineering and Management, Air Force Institute of Technology. Upon graduation, he will be assigned to Naval Air Depot Cherry Point, North Carolina.

REPORT DOCUMENTATION PAGE						Form Approved OMB No. 074-0188
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.						
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE						3. DATES COVERED (From – To)
	23-03-2006		Mast	ter's Thesis		June 2005 – March 2006
4. TITL	E AND SUBT	ITLE			5a.	CONTRACT NUMBER
The companion of Main Rotor Smoothing Flagustinents Comp						GRANT NUMBER
Linear and Neural Network Algorithms 50						PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 56						PROJECT NUMBER
•						N/A
						TASK NUMBER
						WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) Air Force Institute of Technology						8. PERFORMING ORGANIZATION REPORT NUMBER
Graduate School of Engineering and Management (AFIT/EN) 2950 Hobson Way WPAFB OH 45433-7765						AFIT/GAE/ENY/06-M24
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) N/A						10. SPONSOR/MONITOR'S ACRONYM(S)
						11. SPONSOR/MONITOR'S REPORT NUMBER(S)
12. DISTRIBUTION/AVAILABILITY STATEMENT						
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.						
13. SUPPLEMENTARY NOTES						
14. ABSTRACT Helicopter main rotor smoothing is a maintenance procedure that is routinely performed to minimize airframe vibrations induced by non-uniform mass and/or aerodynamic distributions in the main rotor system. This important task is both time consuming and expensive, so improvements to the process have long been sought. Traditionally, vibrations have been minimized by calculating adjustments based on an assumed linear relationship between adjustments and vibration response. In recent years, artificial neural networks have been trained to recognize non-linear mappings between adjustments and vibration response. This research was conducted in order observe the character of the adjustment mapping of the Vibration Management Enhancement Program's PC-Ground Base System (PC-GBS). Flight data from the UH-60, AH-64A, and AH-64D were utilized during the course of this study. What has been determined is that the neural networks of PC-GBS produce adjustments that can be reproduced by a linear algorithm, thus implying that the shape of the mapping is in fact linear.						
15. SUBJECT TERMS Helicopter Rotors, Vibration, Neural Nets, Optimization, Helicopter Main Rotor Smoothing						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER		F RESPONSIBLE PERSON onald L. Kunz (ENY)
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABSTRACT	OF PAGES		ONE NUMBER (Include area code)
U	U	U	UU	146	(937) 255-3 (Donald.kunz@	3636, ext 4548 Pafit.edu)